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Abstract

We analyse theftect of difering uncertainty assumptions on the costs of sharehbloledholder
conflicts arising from partially debt-financed investmertpartial equilibrium model, valid for a
large class of diusion processes, is developed and then applied to the speastes of a geomet-
ric Brownian motion (GBM) and a mean-reverting (MR) proceBsis allows for the comparison
of the two scenarios and contributes to the ongoing disonssn the &ects of mean reversion
on investment and financing behaviour. We find that agencis @e much lower under MR dy-
namics and, through the application of a novel agency castrdposition, we show that for a
high expected growth in future profits (high growth GBM) aggnosts are driven mainly by sub-
optimalfinancingdecisions, as opposed to suboptimal (default and invegjrieting decisions.
The situation is reversed for lower growth assumptions ancih increase in the speed of mean
reversion. Our results on the components and drivers ofcygawsts are valuable to both policy
makers and regulators alike.
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1. Introduction

The bulk of the existing real option literature assumes ttageoutput or input prices to fol-

low geometric Brownian motion (GBM) (Dixit and Pindyck, 199 While this modelling choice
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often provides tractable solutions it has been criticiserklation to its suitability for describing
equilibrium price processes (Lund, 1993). It has also bemgested that such price dynam-
ics, particularly in commodity markets, can be more acalyanodelled using a mean-reverting
(MR) process (Schwartz, 1997). Crucially, it has also begued that the failure to account
for the dfects of mean reversion can lead to “systematic biases irtatdqidgeting decisions”
(Bessembinder, Coughenour, Seguin, and Smoller, 1995).

Motivated by the above, an important line of research,atetil by Metcalf and Hassett (1995),
has attempted to assess the appropriateness of the use ofaGBMsubstitute for more realis-
tic mean-reverting dynamics when considering firms’ optimeestment decisions. The present
paper continues this line of research by considering ffezeof mean reversion deveragedn-
vestment projects. The addition of leverage into the proléxtends the previous analysis to a
much more realistic and economically meaningful settirmyyédwver it requires the explicit con-
sideration of the optionality of the equityholders to déffaun the levered project; resulting in a
two-layered optimal stopping problem. Because of this ay@fed structure, and the assumption
of strategic debt financing, thé&ect of MR on optimal investment in this setting is, unsurpgsy,
more complex.

Furthermore, the inclusion of leverage into this framewavkile complicating the analysis
and introducing an equilibrium aspect to the model, doesalls to also evaluate thdfect of
mean reversion on the optimiaancingdecisions of firms and to investigate tinéeractionof the
financing and investment timing decisioh%o our knowledge theffect of mean reversion on this
interaction has not previously been studied.

This research therefore contributes to the literature ahoptions and stochastic price mod-
elling as well as to the literature on corporate financialqyoand related agency conflicts. The
specific research questions we address are: (i) what arehtraateristics and interaction of a
firm’s optimal investment, default, and financing strategieder the assumption of mean-reverting

output prices? (ii) what are the implications of mean reiegror investment values and agency

1Since Modigliani & Miller's ground-breaking work on optirheapital structure (Modigliani and Miller, 1959,
Baxter, 1967) investment valuation has been closely lirnkegliestions of optimal corporate financial policy. Finan-
cial structure is important for the valuation itself beaaitsnfluences the policy that governs cash flow control, Wwhic
in turn afects cash flows and the project value (Brennan and Trige @@09).
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costs? and (iii) how do these results compare to those austainder GBM dynamics?

To date, three féects of mean reversion on investments have been identifiegtcail and
Hassett (1995) identified thariance gfectin which mean reversion reduces the long-run variance
of a project’s cash flow (compared to GBM), thus resultingoiér investment trigger prices and
sooner investment. However, these authors also pointed satond competinggalised price
effect Here, the stationarity of the mean-reverting processigsphat the probability of reaching
a given level is also reduced, potentiallysetting the variancefect. Metcalf and Hassett (1995)
concluded that GBMouldbe considered as an appropriate substitute for MR sincertiapility
of investment under GBM and MR dynamics are comparableltiregun no significant diference
in cumulative investment.

Sarkar (2003) extended Metcalf and Hassett's argumentaidyrporating a third so called
risk-discounting fect Under mean reversion, a lower cash flow variance df&sets the project’s
risk-adjusted required rate of return and hence the didaaim used for valuationfiecting both
the project value and the value of the real option to inveshéproject. In contrast to Metcalf
and Hassett (1995), Sarkar (2003) concluded that meansien@loeshave a significant impact
on investment when all thredfects are correctly accounted for.

Finally, in a more recent contribution to this literaturesekrekos (2010) examined thffext
of mean reversion on reversible enamydexit decisions of firms; thus incorporating the possibility
of reversibility and disinvestment into the previous asay Similar to Sarkar (2003), Tsekrekos
(2010) also reached the conclusion that it would be erromiémuse the more tractable GBM pro-
cess as an approximation for a mean-reverting process ielsiotlaggregate industry investment.
We note that Tsekrekos (2010), nor the previous papersidemesl a setting in which leverage was
present.

An important consequence of the inclusion of leverage isithatroduces the potential for
conflicting interests of shareholders (borrowers) and hottkrs (lenders). This introduces the
concept ofagency costas a fundamental quantity in our investment and financinglpro (Jensen

and Meckling, 1976§.Existing literature has analysed the direction and mageitf the agency

2In the following, we shall use the ternesjuityholders analebtolders to maintain generality.
30ur model assumes that the investment decision-makersa@ess) are the shareholders and so we focus on the

3



costs resulting from over- or underinvestment. When neyjepts are financed solely by equity,
some researchers have concluded that equityholders temdi&invest, because they bear all the
cost of the investment while sharing the benefits with ddiddrs (Mauer and Ott, 2000, Moyen,
2007, Titman and Tsyplakov, 2007). In contrast to this, whrenjects are at least partially financed
by new debt, equityholders tend twerinvest due to the incentive to transfer wealth from the
debtholders to themselves (Leland, 1998, Mauer and S&®85).

In the context of leveraged investments, the model of MaodrZarkar (2005) is particularly
appealing as it presents the agency conflicts using a tweréayreal option framework; one being
the project investment option, the other being the defailbo after investment. This setup allows
the rational debtholders to incorporate the equityhold&rategy of equity value maximisation
when deciding on how much debt to provide and at what pricerdfore, in light of the signifi-
cance of the ffects of mean reversion on investment timing decisions, weneikhe (GBM based)
model of Mauer and Sarkar (2005) in the present study to a gemeral analysis, incorporating
the risk-discountingféect of Sarkar (2003), and allowing for the consideration emreverting
dynamics; thus providing insights into theifects on both investmeandfinancing decisions.

The GBM based results of Mauer and Sarkar (2005) find thatgwplders’ incentive to over-
invest significantly decreases firm value and optimal leyeraeporting a 9.4%essin firm value
and a reduction in optimal leverage from 66% to 39% for thasdocase parameters. Our analysis
reveals similar results under GBM—8.4% loss in firm value amelduction in leverage from 60%
to 45%—»but that under mean-reverting dynamics the redogtio firm value and optimal lever-
age are much smaller, finding only a 0.9% loss in firm vahred a reduction of optimal leverage
from 47% to 43% for our base case parameters. These resditsii@ that the growth rate and
stationarity assumptions of future cash-flows have a samfiimpact on the equilibriumfiects
of the agency conflict.

In sum, this research extends the current literature indh@¥ing ways. Firstly, we generalise

agency conflict between shareholders and bondholders. \ieedecision makers are not the shareholders, there
could be additional conflicts of interests between shaddrsland managers (cf. Cadenillas, Cvitanic, and Zapatero,
2004, Morellec, 2004).

“Note that Leland (1998) also found around a 1% loss in firme/alue to overinvestment for his base case
parameters under GBM. However, Leland (1998) did not accfauirthe efect of capital structure on firm valuation
whereas Mauer and Sarkar (2005) and our analysis do.
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the model of Mauer and Sarkar (2005) to a wide class fitision processes and to incorporate
the risk discountingféect as proposed by Sarkar (2003). We then apply GBM and MRrdysa
to our general model to assess ttigeet of mean reversion on leveraged investments. Secondly,
we present an alternative solution methodology to MauerSar#ar (2005) based uporfdision
theory, which provides important additional insights ietasting and new results. Thirdly, when
considering the agency costs of overinvestment, we propas®/el agency cost decomposition
into the costs due to suboptim@hancingdecisions and those due to suboptimal (default and
investment}iming decisions. Finally, we extend Mauer and Sarkar (2005) bgpaterising our
model using real (commodity) asset price data.

The remainder of the paper is structured as follows. We dgviile extended version of the
Mauer and Sarkar (2005) model in full generality in SectionViZe then apply both GBM and
MR uncertainty processes to the general model presentatiSaction 3 and provide results and

conclusions in Sections 4 and 5 respectively.

2. Generalised Modd

In the following we develop a generalised extension of thaidtaand Sarkar (2005) model.
Our intention is to setup the model so as to allow for a pregemt that is independent of the spe-
cific uncertainty process used to model output prices. Symlsentation illustrates which model
results remain valid with a high degree of generality (irdependent of the chosen uncertainty
process) and which are not so easily generalised.

We begin by modelling theaner option representing the value of the unlevered project, or in
the presence of debt financing that of the levered progtgy investment. Given the investor's
ability to abandon the project and file for bankruptcy theuadibn of the inner option requires
the determination of the optimal abandonment strategyhénctise of the levered project, such
abandonment is labeled as default. Next, we evaluateutex option which represents the value
of the investment project to the investmforeinvestment. This option must account for uncertain
future output prices, the investor’s optimal timing deois, and the lender’s optimal decision on
providing debt. As such, a strategic equilibrium (under ptete information) between investor

(equityholders) and lender (debtholders) is determined.
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The investment project is assumed to represent a produfality for a commodity that
produces one unit of the commodity per year at a constant@esr unit, which can be sold at
the (uncertain) priceX)wo. Per period profit(; — C are taxed at the constanfective tax rate
7.°> The project is subject to initial investment costand both the underlying project and the
option to invest are assumed to have infinite time-horizdfisancing of the project is assumed
to be undertaken by a mixture of both equity and perpetuat, derere the latter is denoted.

In exchange for the financing amouKt equityholders are required to pay a periodic coupon
payment denoted biR. The debt amounK and coupon paymerR are pre-negotiated from a
‘revolving line of credit’ type of loan commitment, which eity- and debtholders have agreed
upon att = 0, before the investment decision is take®ebtholders are assumed to be rational
and set the equityholders’ coupon paymBmtot only based on the level of debt provid€dbut
also on their expectation of the equityholders’ behaviegarding project default. In the case of
default the equity value is assumed to be zero and the battkrapsts amount tb percent of the

value of the unlevered project at time of default, with deltdlers receiving the remainder.

2.1. Uncertainty dynamics

We model the price procesX{.o as a general non-negative, time-homogeneous, and regular

diffusion living on the filtered probability spac@,(P, {Fi}=0, F) and described by the SDE

dX = a(X)dt+ o (X)dW,  Xo =X, (1)

wherea ando are assumed to be continuous awl denotes the increment of the Wiener process
under theeal-world measure P. Furthermore, we assumedt{&} > O for x € (0, ) and that the
upper boundary at infinity is a natural one (and hence is amaible in finite time). In addition,
from a practical perspective we are only interested in gees for which zero is unattainable after

the process has started. This restricts our attention toegses for which zero is eitheatural

SNote that the presence of tax in the model is crucial sinceestigence of a tax shield is important to induce
equityholders to employ debt financing.

5This type of commitment allows the equityholders to borrowpre-negotiated terms, at any time during the life
of the commitment. For more details see Kashyap, Rajan, t&id @002).
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or anentrance (not exitpoundary. These boundary classifications are an imporiatibhction

to make since the often applied GBM process has zero as ahbtundary, whereas the mean-
reverting process employed, and further discussed, inde8thas zero as an entrance (not exit)
boundary. Eq. (1) encompasses many of the well known presassed in modern finance, such
as the GBM, CIR and CEV models (see Black and Scholes, 1973, IGgersoll, and Ross, 1985,
Cox, 1975, respectively).

In this paper, and consistent with the literature, we wilase the existence of a suitable
spanning asset (resulting in a complete market) and hen@pplg contingent claims analysis to
price the various real options introducedSuch an analysis requires that expectations be taken
under the equivalentsk-neutralmeasure Q and so we find that the dynamics under this measure
are given b§

dX = (@(X) = A(X))dt + o (X)dWE,  Xo = x, 2)

where we haveféectively subtracted a risk-premiumcd) from the drift of the real-world price

dynamics. Herel represents the (justified) Sharpe ratio of the commaxity

2.2. Unlevered project value

To start, we consider the (inner) option determining thesueited project valu®,(x) after
investment. The project derives value from the expectatidiiture cashflows (in present value

terms), subject to optimal abandonment. The project valtiearefore

Ta
V(8 = supES [ e (ke 3)
Ta 0

whereT, is the abandonment time for the manager andepresents the after-tax profit flow of
the unlevered project given by
m(X) = (1 -7)(x-C). (4)

’In Section 4 we use an oil producing firm as our illustrativareple and hence, since oil is traded, the market is
complete and the use of contingent claims analysis can lilg pesified.
8See Appendix A for a detailed derivation of the risk-neutiyiamics given in Eq. (2).



Without loss of generality we assume, for simplicity, thatyoone unit ofX is produced (at a cost
C). To obtain the solution to the optimal stopping problemmidiin Eqg. (3) the Markovian nature

of the process allows us to reformulate the problem to olfssae Appendix B)
Va9 = o) + supE? [ (- (%) (5)

where

fu(x) = EQ fow e my(X)dt = (1 - 1) (fooo e "EQ[X]dt - %) (6)

representing the present value of the total expected puaifitse unlevered project if the project
wasneverabandoned. The second term in Eq. (5) can therefore beiategpeconomically as the
value of the option to abandon the project. Furthermoreptbgect manager would only abandon
at prices for which the expected future profits are negaiteef,(X;) < 0.

Given the infinite-horizon of the optimal stopping problemEq. (5) it would seem intuitive
that the optimal stopping rule be independent of time anccédake the form of a threshold
strategy, i.e.T; = inf{t > 0| X; = X}, the first hitting time of the commodity pric¥ of the
level x;. However, the optimality of such a threshold strategy sthawit be assumead priori.°
However, necessary andfBaient conditions on the patofunction f, and the procesX for the
optimality of threshold strategies are provided by Villawe (2007). Furthermore, it can be shown
that for all cases considered in Sectiorf3takes on a simple linear form and hence easily satisfy
the (fairly weak) conditions required.

Once the optimality of a threshold strategy is shown, to @edowith the solution two methods
are commonly used. One can formulate the associated freediaoy problem and solve it using
the general methods of second-order ordinaffedential equations (ODES) and the principle of
smooth fiti° this was the methodology employed by Mauer and Sarkar (209&j)e, we choose
an alternative probabilistic method, based ofiugiion theory (see Rogers and Williams, 2000),

which we believe to be more direct and illuminating when agapto the wider class of uncertainty

®Such a priori assumptions of optimality are abundant in ileeature as was noted by Villeneuve (2007) who
provides illuminating cautionary examples.
105ee Chapter 10, Section 4 of Oksendal (2003).



assumptions under consideration in the present paper.
Being justified to use simple threshold strategies, it iarcthat our optimisation over stopping

times in Eqg. (5) now becomes an optimisation over threstedélx,, in other words

Vu(®) = fu09 — inf B2 [e T fu(Xr)| = fu(x) — min{ fuOQ)ED [e7™]}. ()

where we have used the continuity of the proc¥gs the last equality above. To proceed, an
expression for the expected discount fackff[e'™2], is needed. This object can be identified as
simply the Laplace transform of the hitting tiriig for which, in the class of time-homogeneous

diffusions under consideration, we have a very general expresamely

ES [e_rTa] — ¢(X)/¢(Xa) for X Z Xa’ (8)

Y(X) /(%) for X < X,

whereg¢(x) andy(x) are the unique (up to a linear scaling), positive, decngaand increasing

solutions, respectively, of the linear second-order ®DE

%a-z(x)u”(x) + ((X) — Ao (X)) U'(X) — ru(x) = 0. (9)

From Egs. (7) and (8) we see that the unlevered firm value tbosrbes

% (x) %
V() = fu(X) — fu(xd)%, for x > x;, 10)

0, for x < x;,
where the optimal abandonment trigger pngesolves the following equation

$(<) _ 1i0%)
o06) ~ fux)’

(11)

which is obtained from the first-order condition of the miisation in Eg. (7)}> Note that de-

"These functions are often called thendamentasolutions to such ODEs. For more details see Chapter Il, Part
11 of Borodin and Salminen (2002).
12The second-order condition can be verified, obtaining ammimi providedf;’ (x;)#(x:) — fu(x3)¢” (X5) > 0.
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pending on the specification of the uncertainty procésgq. (11) may or may not allow us to
solve forx; explicitly. Only in the very simplest cases will such expligolutions be available,
however in all casexs; can be found numerically very easily using any standardfiadtng algo-

rithm.13 In the latter case, knowledge of the existence and uniqsesfe&e solution to Eq. (11)

is of practical interest as will be discussed in the contéRroposition 1.

2.3. Levered project value

Next, consider the availability of debt funding, where net# payments are assumed to be
tax deductible. Due to the resulting tax-shield of debt#iriag, equityholders have the incentive
to take on debt to increase the total equity value of the tnvest. In the presence of coupon

paymentR > 0, the profit function of the levered project changes Eq.@4) t

7(X)=(1-7)(x-C-R). (12)
The levered project valué,(x) after investment is simply the sum of the values of equity debt
Vo(X) := E(X) + D(X). (13)

Analogous to the value of the unlevered firm, the equity valube levered projecE(X), is

Td
E(X) := SUPES f e ", (X)dt, (14)
Td 0

whereTy = inf{t > 0| X; = Xg}, the first hitting time of the default triggeg, the price at which the
equityholders chose to default. Similar to the unleverescthe optimal stopping problem (14)

can be reformulated &s

E() = fi(x) + SUpER [e™ (- fi(Xr,))] (15)

13Such algorithms are built in to most software packages ssdhd LABor Mathematica
Details are identical to those in Appendix B and thereforétieah.
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where
C+R

fg(X) = ES Lm e_rtﬂ'g(xt)dt = (1 - T) (Lm e_rtES[Xt]dt - (16)

represents the present value of the total expected profiteedevered project if the project was
never abandoned by the equityholders. Note that by ingpeofiEqgs. (6) and (16) it follows that
R(1-1)

fe(¥) = fu(x) - ———, (17)

meaning that the total expected profit function of the leglgymject equals that of the unlevered
project less the expected present value of the after-tagaopayment stream. In addition, in-
spection of Eq. (16) and the continuity Xfindicate thatf,(x) (and hencef (X)) is increasing in
X.

Using the same solution techniques as before yields thewolg equity value

fo(X) — f,(X, ﬂ?, for x > xt,
E(X) _{ {’( ) t’( d)¢(xd) d (18)

0, for x < xj,

wherex; solves the equation
#0) _ 1100
pxp)  flQ)

As previously mentioned, an important question arisingnfriie above analysis is under what

(19)

conditions do Egs. (11) and (19) have a solution and whencis awsolution unique? The answer

is provided by the following proposition.

Proposition 1. Under the standing assumptions on the process X, theresexsblution to Eqs.
(11) and (19) provided that §(z) and (2), respectively, are negative for a non-empty interval of
R,. Furthermore, if the functiof(2) := rz + 10(2) — a(2) is non-decreasing,i(k) (fori = u,?) is

convex, and zero is a non-attracting boundary, then thigtgm is unique.
Proof. See Appendix C. O
Corollary 2. Whenever solutions to Egdl.1) and (19) exist, % > x; for any process X.

Proof. See Appendix D. O
11



The above corollary generalises the GBM based regult x;, found by Mauer and Sarkar
(2005), to a wider class of flusion processes. This result is consistent with econontudtiion
since given the extra cash-flow burden of the amdgnbne expects rational equityholders to
abandon the project sooner (at a higher output price) givetower overall cash inflows.

Next, to value the debt we observe that the debtholdersbgericash flow is equal to the
coupon paymer®, provided that the equityholders do not default. In the cdskefault, debthold-
ers receive the value of the unlevered project less bantywquists. Therefore, the debt value is
given by -

D(x) := E [ fo " eRdt+ e Ti(1 - b)Vu(Xr:) (20)

where T} denotes the equityholdersptimal default time. Note that this is no longer an opti-
misation problem since the debtholders do not have anytdméaence on the time of default.

Accordingly, the debt value can be shown to be (see Appendix E

R _ ) _ R) ¢(¥) "
D) - { S+ ((L-bVu(x) - B) 58, for x> x;, 1)

(1 - b)Vy(x), for x < x;.

Note that the assumption of a natural boundary at infinity tfer processX guarantees that
limy_. ¢(X) = 0 and hence Eq. (21) shows that for very large values of thpubydrice, the
value of debt approaches the value of a perpet&ity, indicating that the probability of default
also approaches zero.

Substituting Egs. (18) and (21) into Eq. (13) and judicieeranging provides the following,

particularly insightful, representation of the value of tevered project (fok > x;)*°

¢(x)
¢(x5)

R (1 B(X) 22)

Ve(X) = Vu(X) + (1~ ¢(XZ])) — bVL(xg)

Therefore, we find that the value of the levered project campessed as the sum of three
components. The value of the unlevered project, the expextditional benefit provided by debt

in the form of a tax shield, and the expected cost of bankyupidis representation forms the

15See Appendix F for the derivation of Eq. (22). Note thatxer x;, we haveV,(x) = D(X) = (1 - b)Vy(X).
12



basis for the tradefbtheory of optimal capital structure (Kraus and Litzenberdg873).

2.4. Second-best investment policy

Next, the option to invest in the project, which we call fina value is considered® We begin
with the case of theecond-beshvestment policy based on the equityholders’ desire toimize
equity'shareholder value (as opposedfitst-bestor total firm value). This policy provides the
optimal time to undertake the investment from the equitgtard’ point of view. The second-best

value of the investment option (firm), denotedrasis defined as
Fa(x) := SupER [e ™(E(Xr,) - (1 = K))| (23)

since the equityholders will only outlay — K for the investment and they wish to maximise
the total value of equity at the time of investment. It can befied that the equity value also
satisfies the necessary conditions for the optimality ofrasthold strategy in Eqg. (23) and hence
T; = inf{t > 0| X = X} wherex; denotes the second-best trigger price at which investment

becomes optimal. The second-best value can thus be caldwlat

ST Y (x)
Fo(x) = max{(E(x) - (I - K)ER[e"™]} = rr;gx{(E(XZ) (- K”m}
yielding
*\ _ w(x) *
£ :{ (E(x) — (I K))W;), for x < X, (24)
E(X) - (I - K), for x > X,
wherex; solves the equation ‘
() W) 25)

E(g) -~ (1 =K) — y(x)
Note that Egs. (24) and (25) provide the second-best firmevaha trigger priceonditionalon
the equityholders and debtholders agreeing on the pereadipon paymeri in exchange for an

initial loan of amount. However, recall that debtholders rationally anticipiat tequityholders

8Note that, like Mauer and Sarkar (2005), we assume the firnensaking this investment decision has no other
existing operations or debt. Hence the investment optitureva equivalent to thpurefirm value, since there are no
additional operations from which to derive value.
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will maximise equity value and will therefore charge appragely high interest payments. In other
words, the debtholders have no control over the equitymsldiefault and investment decisions
but they can determine, given the coupon payni&nhow much debt will be provided upon

investment. Consequently, tiiar value of debt, denoted 46" and representing the amount of
debt provided at the time of investment, is equal to Eq. (2&)uated at the second-best trigger

price x;, i.e. K* = D(x;) which yields’

)’ (26)

< $ + (L= BV - ?)

Eq. (26) governs the equilibrium relationship between thgpon paymenR and the amount of
debt provided?® Given this relationship we can now determine the secontlfives value and

trigger pricein equilibrium Substituting Eqgs. (26) and (13) into Egs. (24) and (25) veetbat

£ (Vg(x*z‘) - I) f((xz’o) for x < x5, e
2 =
Vi(x) -1, for x > X,

and furthermore
() _ v (%)
V() =1 w(x)

Note that Eq. (27) represents the expected discounted vhtheleveredproject less total invest-

(28)

ment cost.

2.5. First-best investment policy

The comparison of the general results derived from Eqgs. d2d)(28) to the first-best firm
value and investment trigger price allows for a quantiw#imalysis of agency costs in the presence
of conflicting equityholder-debtholder interests. We dethe first-best firm value and investment
policy based on the setting in which the overall firm valueppposed to equity value, is max-

imised. In this case, and analogous to the second-best, takidérst-best firm value is defined

"The rational debtholders could provide less debt for a goapon paymerR, however we assume that compe-
tition amongst debt providers will enforce the stated eityual

BAlternatively, and perhaps more intuitively, one couldveo(implicitly) for R and determine the fair coupon
payment debtholders would expect for a given amount of Hgtatomised to equityholders at time of investment.
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as

. Ty _ Y(X)
Fi(x) = SlepES [e T(Ve(%,) - |)] = rT](<l'3l)({(Vf(><1) - 1) m}, (29)
hence
) ¥(X) *
£ :{ (Vg(xl) I) e forx<x, 0)
V(X)) -1, for x > xj,

wherex; denotes the first-best trigger price and satisfies the exniti

Vi) w09)
Vi) -1~ %)

(31)

Our chosen solution methodology allows us to highlight thiofving important results when

comparing the first- and second-best firm values, i.e. E@8.88d (27) respectively.

Proposition 3. For coupon payment R fixed, the second-best firm vaj(® Is always lower than
(or equal to) the first-best value; ), i.e. F(X) < F1(x), for all x, hence agency conflicts always

reduce total firm value.

Proof. We note that the representation of the two firm values givelkgy. (27) and (30) dif-
fer only by the critical level’ employed in each. Since the valuef(x) was determined by
maximisation over such investment triggess it follows that this must imply the relationship
F1(x) > F2(x) for all x. O

Corollary 4. For coupon payment R fixed, the second-best investmenetrggge always lies
below the first-best investment trigger price, i.6.<xx;, resulting in earlier (or over) investment

by levered firms.

Proof. SinceF,(x) < F1(X) for all xand bothF; andF, dominateV, — | the result is evident. See

Appendix G for a more detailed proof. O

The above results confirm the overinvestment of equityhieldle (at least partially) debt-

financed investments for a much wider class of uncertaintggsses. However, it is important

19proof of the existence and uniqueness of the first- and selesitrigger prices; andx; would appear more
difficult than forx; andx; (since it requires proof of the convexity ®f). However, numerical studies of the cases
considered in Section 3 indicate that for a wide range ofmealsle parameter values this is indeed the case.
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to note that the above results hold true for a coupoiixed across first- and second-best out-
comes. However, equityholders are free to choose the fingrstrategy and hence the coupon
paymentR which maximises equity value. From the problem formulaitocseems clear that an
optimal coupon payment exists due to the trdtlbetween the expected benefits of the tax shields
and the expected costs of financial distress; see Fig. 6 an@Ejq We defined the optimal coupon
payment which maximises both the first- and second-best trevaR" = argmaxFi(x; R). The
resulting éfect of this additional flexibility of the equityholders oretkalue of the firm and hence

the agency costs of overinvestment is presented in thenfisipproposition.

Proposition 5. The first-best firm value (using the first-best optimal couppndominates the
second-best firm value (using the second-best optimal coBpp i.e. Fi(x R;) > Fo(x R).
Furthermore, this dferential in firm value is greater than or equal to thgfdrential in firm value

for a fixed coupon applied to both first- and second-best onés i.e. k(X R;) > Fi(x;R;) >
Fa(x R).

Proof. The proof is trivial sinceéF1(x; R}) > F1(x; R) > Fa(x; R;) where the first inequality must

be true from the definition dR; and the second inequality is due to the result of Propositiori]

To summarise, for a fixed coupon paym@&ytthe overinvestment of equityholders (i.e. their
optimal timing decisions) results in a decrease in firm valtdowever, with the inclusion of
the dfect of agency conflicts on the optimal financing policy (i.Be thoice of coupoiR) the
equityholders’ optimal leverage decision results in amduether reduction in firm value.

At this stage it would be desirable to provide a result conmggthe relative sizes of the first-
and second-best investment trigger prices when the eaquitgls are also allowed to optimise over
the couporR. Unfortunately, such a result appears to be elusive in tasgmt (very general) set-
ting. Numerical computations in Section 4, however, retieal x; (R;) > X;(R;) for all parameter
regimes considered, indicating that overinvestment ieéadmaintained by equityholders when

they are also allowed to optimally choose the level of delatrfaing.
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2.6. Agency costs

To quantify the agency cost of overinvestment by equitybrddve follow Mauer and Sarkar
(2005) and define the agency cost as théedence between first- and second-best firm values

(evaluated at their respective optimal coupon paymenisg¢ioent of the second-best firm value

Fi(x R} — F2(X R;)

AC = Fa(X R)

(32)
Note that given our expressions for the firm valbg) in Eqs. (27) and (30), it can be seen that
the agency cosAC is independent of the pricg provided thak < X5(R;). If X;(R5) < x < X;(R})
then the agency cost becomes dependent and further ifx > xj(R;) then there are no agency
costs since it is optimal to immediately invest under botstfiand second-best outcomes. This
point was not previously noted by Mauer and Sarkar (2005)camdbe important when assessing
the agency cost of projects for which immediate investmemptimal under either the first- or
second-best case.

Mauer and Sarkar (2005) also chose to decompose agencyitmsizo components. The first
being the loss of pure operating value due to agency conéintisthe second the loss in the net
benefit of debt financing. Given the above considerationsnstead choose to decompose the
agency cost dierently. In order to pinpoint the agency costs due fiedences iiming decisions

(X; vs. x;) and those due to flerences irfinancingdecisions R; vs. R;) we define

FiX R) —Fo (6 R) | | i tim
FA(CR) = AC'" + AC™. (33)

AC = Fi(x R}) — Fa(X; R;)] .

Fo(x; R;)

This novel decomposition provides additional insights ligghlights important results when com-
paring GBM and mean reversion in Section 3, the results otlwhre reported and analysed in
detail in Section 4.

Finally, we note that the €fiering optimal coupon payments alsidet the optimal leverage at
investment, defined ds = D(X"; R")/V.(x; R’) fori = 1,2. These leverage ratios will allow us
to evaluate the impact of agency conflicts (and also meangievg on optimal capital structure

decisions.
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3. Mean-reverting commodity prices

In this section we apply the general model from Section 2 tced known mean-reverting
process. Applying the GBM process (witl{x) = ax ando(X) = oX) to our general setup will
result in a model similar to the one studied by Mauer and $4@@05). Results for both GBM
and MR will be provided in Section 4.

To incorporate mean reversion into the price dynamics weiden the following arithmetic

mean-reverting (AMR) process
dX = (X — X)dt + o X dW, (34)

also known asnhomogeneous geometric Brownian motffaBM)2° due to the inhomogeneity of
its expected return in the state varialle Under the equivalent risk-neutral measure Q the price
process becomes

dX = ((X — X) — Ao X;) dt + o X dWL. (35)

Heren denotes the speed of mean reversion and determines the vatéch X; returns tox, the
expected long-run price level. In comparison to Mauer an#&842005) the processin Eq. (34) is
a stationary process as opposed to the non-stationary GBbégs employed by those and many
other authors. All other process elements are identicdléamnes described in the context of Eq.
2).

In the real option literature, the use of the process (34¢glabck to Bhattacharya (1978)
and has been applied more recently by Insley (2002), AbaatileGhamorro (2008), Hong and
Sarkar (2008) and Tsekrekos (2010) amongst others. It Isasb&len used in other areas such
as stochastic volatility (see Lewis, 2000) and interest nabdelling (see Brennan and Schwartz,
1980). The reasons for choosing this particular procesmarg/fold. First, like GBM, the IGBM

mean-reverting model guarantees positive process valaesistent with our oil price application.

201n the existing literature, this process has been calledpayst other things, ‘inhomogeneous geometric Brownian
motion’ (IGBM) (see Abadie and Chamorro, 2008, Zhao, 20@®3pmetric Ornstein-Uhlenbeck’ (GOU) (see Insley,
2002) or ‘geometric Brownian motion withfine drift’ (see Linetsky, 2004). To be consistent with the enmrcent
literature we refer to this process as IGBM.
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Second, Zhao (2009) showed that IGBM has many nice closed fooperties despite not being
of the more tractableffine class. Third, due to the explicit inclusion of the riskadiunting éect

in this paper, it is advantageous to have a process for whiehadlatility of returns is a constant

instead of exhibiting the so-calléeverage gect?! Finally, and perhaps most importantly, it can
be seen that geometric Brownian motion (GBM) can be obtaased special case of IGBM by

settingp = 0 orX = 0 andp = —a, this allows for a direct comparison of both the IGBM and GBM
processes. Given these considerations the applicatidaB¥lin modelling positive commodity

prices appear to be a natural fit.

Remarkl. We note that the IGBM process exhibits an entrance (not éwitindary at zero in
contrast to the natural barrier for the GBM process empldyellauer and Sarkar (200%).This
indicates that the origin is inaccessible after the probessstarted and the only feasible case of
a zero price level is given when the current price is zero,Xg= 0. These considerations can
have an importantfeéect on the option value. In the case of the investment optiscudsed in
Section 3.3, the entrance boundary guarantees a positiverdilue atx = O for positive long-run
mean-reverting levelx(> 0). The intuition behind this is that, even if prices are eutly zero,
we can still expect future prices to revert back to a positwvg-run mean levet. Hence atx = 0
the investment option still holds time value and so is pesiti

It might appear that these are merely technical consiadersithowever a proper understanding
of the boundary behaviour of the chosen uncertainty prosessicial in the correct application
of the appropriate boundary conditions. For example, Tedalg (2010), who also employs the
IGBM process, attempted to apply an incorrect boundary itimmcat zero (Eq. (7) in Tsekrekos,
2010). The stated condition is applicable for GBM (and itsirel boundary) but not for IGBM. In
fact, the only solution to Eq. (6) in Tsekrekos (2010) sgirgf the incorrect boundary condition

is indeed the trivial solutioW, = 0. However, a careful scrutinizing of Tsekrekos (2010) adve

21This is not to say that the leveragfezt is unimportant, just that we choose to isolate tfeats of risk-
discounting from the leveragefect. The influence of the leveragéext on investment and financing decisions
could be investigated easily using the CEV model but thigfisfbr the subject of future research. For a step in this
direction see Nunes (2009).

22This can be seen most clearly by the application of the wallkmFeller testsfor boundary classifications. Zhao
(2009) applied such tests and showed that, for the proc&3s48ro in an entrance boundary and infinity a natural
boundary.
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that an incorrect application of the incorrect boundaryditbon results, fortuitously, in the correct

expression for the solution to the associated free-boyrutablem.

3.1. Unlevered project value

The process in Eq. (35) can be rearranged to

dX = (n + /10')( dt + o X dWS, (36)

X
— =X
1+ A0/ t)

which is identified as an AMR process with a speed of mean semeofn + Ao- and a long-run

mean level oX/(1 + Ao-/n). Hence it is well known that the expected value at tinsegiven by

B2 X] = Jeren @7)

X
1+ Ao/n ( 1+ Ao/n

Therefore, by Eq. (6), the value of all future discountedestped profits is given by

38
r+n+/10'+r(r+n+/la') r (38)

X X C
109 == ! )
Given Eq. (38) the abandonment trigger prigan Eq. (11) can be determined and the value of
the unlevered projest,(x) in Eq. (10) calculated. To do so, the functiaf(x) andy(x) associated

with the IGBM process have to be determined.

Proposition 6. The fundamental decreasing and increasing functibasdy associated with the

procesq35) are given by

609 =M (3. 201-) + 22T ) 39)
009 = XU .20+ 22D ) (40)

where M and U are confluent hypergeometric functions; &;X/0?, andvy is the negative root

of the quadratic¢o?y(y - 1) - (7 + o)y —r = 0.

Proof. The derivation of the solution to Eq. (9) in the case of IGBMe®on its reduction to the
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standard form of the so-called Kummer’s equatiqisee Appendix H). O

3.2. Levered project value

In the case of the levered project the calculation of theevaliall future discounted expected
profits f, requires the substitution of Eq. (37) into Eq. (16) (or al&ively by substitution of Eq.
(38) into Eq. (17)) yielding

X nXx C+R

fo(X) = (1 -
) =(1-7) r+n+/10'+r(r+n+/10') r

(41)

This equation allows us to solve for the default trigger @ug in Eq. (19) and thus determine
the optimal equity value of the levered projdfx) in Eq. (18). Next, and following Eq. (21),
the value function of deldD(x) can be specified. Lastly, the value function of the levenegeot
follows from applying the previous results to Eq. (13).

Inspection of Eq. (41) leads to the following important atvaéion.

Proposition 7. Considering the uncertainty dynamics of £85), the optimal default trigger price
X3 does not exist, and hence it is never optimal to default oretered project, if the following

condition is satisfied

X r+ Ao
1 . 42
R &

Furthermore, if Eq.(42) is satisfied, the project value,{X) remains finite and is given by(k) +

R/r. The same results hold for the optimal abandonment triggee X, when R= 0.

Proof. Noting that f, is linear (and hence convex), we recall from Propositiondt #hunique
optimal default (abandonment) trigger exists provided fp&f,) becomes negative iR, . Since
f, is increasing it sfiices to show that,(0+) < O for this condition to be satisfied. Evaluating Eq.

(41) atx = 0 provides the above result. O

Corollary 8. Under geometric Brownian motion with dridt, the optimal default and abandon-
ment trigger prices xand X, respectively, do not exist (for ER > 0) if & > r + Ao (and hence

default is never optimal). Furthermore, in this case, thej@ct value becomes infinite.

233ee, for example, Abramowitz and Stegun (1972)
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Proof. SettingX = 0 andnp = —a in Eq. (42) provides the required result. O

The above results provide clear qualitativéfeliences in investors’ behaviour between the
GBM and IGBM case. Under the assumption of a GBM price protessonditione < r + Ao
is required to ensure that the project valuation is finite iamdstors will always optimally default
on (abandon) the project in this case if subjected to pasdosts. Otherwise, if > r + Ao, the
project has an infinite value and trivially should never baratoned” This condition &ectively
restricts the region of applicability of the GBM model to wiag projects in this (infinite horizon)
case. Under the assumption of mean-reverting prices onthiee band, the project valuk can
be seen to remain finitlor all parameter regimes, even when it is optimal to never default o
the project. Finally, we note that Eq. (42) indicates that & C + R, hence the project is not
profitable in the long-run, then it will always be optimal tefdulyabandon at sticiently low

prices, irrespective of other parameters.

3.3. First- and second-best investment policy

Following the steps of the general model, the firm value flomstF;(x) (i = 1,2) for the
specific case of process (34) can be found by applying Eq9.a{39 (40), along with Eq. (22),
in the general representations given by Eqgs. (27) and (3®)xddtition, the first- and second-
best trigger prices can be calculated numerically with daaah root-finding algorithms applied
to the specific cases of Egs. (28) and (31). Other requiredtsnip these calculations are the
abandonment and default trigger priogsand x;, determined by the specific cases of Egs. (11)

and (19) respectively, as well as the integrated profit fionct,(x) given in Eq. (41).

4. Results

In this section we derive numerical results based on the IGBMess described in Section
3, which, upon setting = 0, allows for the comparison of our investment, financing palicy

related results with those based on a standard GBM priceepsodNVe proceed as follows. After

24This condition is reminiscent of the popular (Gordon) cansgrowth model for equity valuation (see Gordon,
1959) in which the equity cannot be valued if the expectedrugrowth rate of dividends exceeds the risk-adjusted
required rate of return.
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discussing our base case parameters we first focus orffdeseof mean reversion on the two-
layered optimal stopping problem to study how the defautioopaffects investment timing and
financing decisions. We then focus on quantifying the agensys of debt financing (and its com-
ponents) and perform extensive comparative statics asdtysall model parameters, focusing in

particular on the speed of mean reversiomwhich plays a crucial role for our model results.

4.1. Base case parameters

To illustrate the model results we consider the investmantan oil production facility (such
as an oil rig). Oil continues to be a key energy resource in2thet century and therefore has
received much attention in the the real options literataee( for example, Paddock, Siegel, and
Smith, 1988). Furthermore, many studies indicate thatratkepdynamics exhibit mean-reverting
behaviour, at least over longer time periods (see Bessamabat al., 1995), therefore oil would
appear a natural choice as our illustrative example.

We estimated the parameters of the IGBM model using 12 ydarsugry 2000—-December
2011) of monthly West Texas Intermediate (WTI) oil pricealét)S Dollars per Barre> We
employed the estimation method of Longstand Schwartz (1995), which has also been employed
in many other papers since, including Insley (2002), Saskat Zapatero (2003) and Hong and
Sarkar (2008). The estimation yielded the following baseaemcertainty parameteis= $9822,

n =0.1733 andr = 0.274.

The other (non-process specific) parameters are taken to be0.04, 1 = 0.32, 7 = 0.3,

b =0.35C = $60,R = $1303, | = $180 andX, = $1002° The production cost per barrel of $60
is set to be the average production cost for several oil proalutechnologies (see International
Energy Agency, 2008, p.218). Note that these costs (asstonieel constant) are less than the
long-run price levek and so, in the absence of debt, the project is expected to eakefit in

the long-run. The base case coupon paynieistderived as the optimal second-best coupon for

25The data was obtained from th#S Energy Information AdministrationWe choose this period to respond to
what appears to have been a structural change in the pride(&d @ much higher price regime) around the turn of
the last century. It should also be noted that we estimategithcess using real prices since it is the real price (not
the nominal) that is assumed to mean revert. As such we dmavell prices to December 2011 prices using the
Producers Price IndegPPl).

26Note that all costs are in units per barrelsince the estimated price is in these units.
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the base case parameters (in which 65.77% of the projectaeded by debt). This choice is
consistent with the procedure adopted in Mauer and Sark&5)2for choosing their base case.
The dfective tax rater of 30% and bankruptcy costsof 35% also follow Mauer and Sarkar
(2005). The investment costis assumed to be three times the yearly costs. We progese
be $100 which approximately reflects WTI oil prices during finst half of 2012. For the Sharpe
ratio 1 we assume a value of 0.32, taken from Henriques and Sadd@6ky3) who reported this
to be the Sharpe ratio for oil prices over a similar sampléoperFinally, the risk-free rate is

chosen to be 4%.

4.2. Project (inner option) and firm (outer option) values

Fig. 1 illustrates project valueg(x) for i = u,¢, and the project abandonment and default
trigger prices for the base case. The unlevered projecttimafty abandoned at an oil price
of $23.25, whereas the addition of leverage increasesrifjiger to $48.77, thereby confirming
Corollary 2, i.e. x; < x;. We note thatx; is very low compared to the prices observed during
the data sample period, indicating that this level would igdlly unlikely to be reached if price
dynamics continued as in the sample period. On the other, hgnd more than twice as large,
indicating a much higher probability of default due to tikeet of debt on the project cash flows.
We also note that for the base case paramatgbdg) = $18153 andV,(Xp) = $17279, hence
debt financing adds $8.74 (or 5.06%) to the total projectejaleflecting the expected value of the

tax shield in excess of bankruptcy costs.

*** Insert Figure 1 about here ***

*** Insert Figure 2 about here ***

Fig. 2 illustrates the first- and second-best firm vakieth accordance with Proposition 3,

the first-best firm valu€&,(x) is greater than the second-best firm vaféx) with the diference

2To better emphasise thefitirence between first- and second-best firm values graphigelideviate from the
base case coupon payment and uRed$50 forthis figure only
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reflecting the agency cost of debt financing. Also, overitmesit is observed sincg < x;, which
confirms Corollary 4. Note that the smooth pasting=e(x) onto V,(x) — | at x; indicates the
optimality of the first-best trigger price to maximise thedead firm value. In contrast to this, the
optimality of the second-best investment trigger dictdted theF,(x) pastes smoothly onto the
equity valueE(x) — (I — K) (not depicted in Fig. 2), not total project value (depictedrig. 2),
thus explaining the kink in the firm value B5(X).

4.3. Abandonment and default trigger prices

Trigger prices of the inner and outer option are of utmostdrtgnce, governing the investor’s
optimal behaviour both before and after investment herftgeincing the rational debtholders’ be-
haviour and the magnitude of agency costs. Key drivers fsdhirigger prices are the parameters
of the mean-reverting process employ&ds{ ando). Comparative statics for the abandonment
and default trigger levelsg, andx;, are presented in Fig. 3. In addition, comparative statictife
non-process dependent, discount parametarsl 1 and cost parametefs andR are presented.
These are crucial in our understanding of tifftee of mean reversion on the entrepreneur’s opti-
mal timing, particularly in the presence of risk discougtand in light of the results of Proposition
7 and Corollary 8. As for the parametdraindr, it can be seen from Egs. (11) and (19) that the
abandonment and default trigger prices are independertbf b

It is important to note that these comparative statics weoelyced for a fixed (base case)
couponR. However, the investment timing and financing decisionsranmmately linked, therefore
once we depart from the base case, the optimal equilibriwpao payment changes, providing
additional éfects on the default and investment trigger prices. We begamlalysing the isolated
effect of parameters on the optimal timing decisions by fixt(and hence the financing deci-
sion). In Section 4.6 we will extend this analysis by consitgthe equilibrium coupon payment
and hence thefiect of the optimal financing decisions, presenting the gdmeechanics of this

complex and highly nonlinear model.

*** Insert Figure 3 about here ***
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Fig. 3 demonstrates that < x; for all parameter values. Also, for higherlower costs (either
C orR) or a lower discount rate (due to a loweor 1) abandonment and default occurs at a lower
trigger price because the expected profitability of theguhjin present value terms, increases in
these cases. Project owners therefore tolerate much laweutoprices in light of this increased
expected profitability.

Also, from Fig. 3(b) we observe that a higher speed of meaarsean results in a lower
abandonment or default trigger price. For low valueg tiere is very little &ect on the default
and abandonment trigger prices, whereas there is a moreymoad &ect for higher levels of
n. As noted previously, for the base case parameters therlongrofitability of the production
facility is positive (i.e.X—C—R > 0) and so higher levels gfindicate that price departures fram
(and hence from a profitable region) are corrected more tuilckough a stronger mean-reversion
force. This reduces the price variance and the equityhsldee willing to tolerate lower output
prices.

However, note that the dependence of the trigger prices is intimately linked wité values
of the long-run price levet and cost€ + R. Specifically, it can be shown that when the project is
not expected to be profitable in the long-run (xe< C+ R) we find that an increase in the speed of
mean reversion actually increases the abandonment andtdetgger prices, and hence increases
the probability of such default (which in turn would impacthd provision and the equilibrium
outcome)f® This result emphasises the importance of the long-run pholity on the models
outcomes which will be discussed in more detail in Secti@n 4.

In reference to Fig. 3(c), it is well understood that (in thesence of risk discounting) an
increase in volatilityo- would result in an increase in the value of the default andhdbament
options, with an associated decrease in the default anadlaharent trigger prices. However, the
inclusion of the risk-discountingfiect results in the impact of volatility on the required rate o
return having an additional and competirfieet on the default and abandonment trigger prices.
An increase ino results in a higher risk-adjusted discount rate and henogverloptioriproject

value and a higher trigger price. These two competing foegg$ain the observed comparative

__(-)(X-C-R¢'(x;)
r(r+n+a0)g” (%) fe(xg) ’
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statics indicating that the risk-discountinfiject dominates for low volatilities. We thus state our

first result.

Result 1. Under mean-reverting dynamics the inclusion of the rigedunting gect results in
non-monotonic behaviour of the abandonment and defawgén prices with changes in the

volatility parametero.

Fig. 3 also shows that for certain parameter regimes it isn@gbtto never abandon or default
(x; = 0 andx; = 0 respectively), see Proposition 7. No-default regionsipéar very profitable
projects, when eithex is very high or variable costs are very low. No default or abandonment
also becomes optimal for ficiently low volatility o or Sharpe ratiol, and for stficiently high
speeds of mean reversignsince these scenarios describe an increased certaintyce and
hence profitability.

Critical parameter values which separate the default gensudefault regions can be deter-
mined by rearranging Eq. (42) for the required parameter. eikample, the critical value of

above which the investor would never default on the projeétig 3(b) is

. r+0)(C+R
" X-(C+R

*

= 0.37 (43)

with the associated critical value for abandonment obthinesettingR = 0 to yieldn* = 0.2.

4.4. Investment trigger prices

Next, we investigate the optimal first- and second-beststment trigger prices. Fig. 4 plots
the comparative statics of the investment trigger prices = 1, 2, along with the abandonment
and default trigger prices; and x; for comparison. Again, we begin the analysis with a fixed

coupon paymernt.

*** Insert Figure 4 about here ***

The analysis of the critical investment trigger priogsand x;, as a function of the process

and non-process model parameters demonstrates the @atnrent by equityholders, confirming
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Corollary 4. Fig. 4 also shows that the trigger prices deswdar higher long-run price levels
and a higher speed of mean reversionThe opposite relationship holds when considering the
optimal investment trigger prices andr, A, 7, Corl.

Furthermore, Fig. 4(c) indicates that investment triggergs increase as uncertainty increases
accompanied with an increase in overinvestment (since dpebgtween first- and second-best
trigger prices also appears to widen). To help explain tigsgase in overinvestment, we note that
the equityholders share the benefits of the higher pricssilfreg from an increased volatility) but
are still limited on the downside by their ability to defaatt the project and hand the project over
to the debtholders. This asymmetric péthus results in increased incentives for equityholders
to overinvest as volatility increases (see Mauer and Sa2k#5).

When considering the first- and second-best investmergdrigrices as a function of the
couponR we observe that for an initial increaseRboth the first- and second-best trigger prices
are reduced. AR increases further this initial decrease reverses and idpgetr prices start to
increase?® We then observe that for the second-best outcome, thereriicalovalue of R above
which the default trigger price is actually higher than theeistment trigger price. For the base-
case parameters this can be seen to be approximately $13Bi82egion corresponds to the case
in which the equity value would be eroded to zero and theesfoupons above this value are not
economically meaningful.

The economic insight behind the non-monotonicity of theestwment trigger prices in the
coupon paymenR differs for the first- and second-best outcomes. For the firstdpaniser
the investment cost is fixed &tasR increases and so the optimal behaviour is simply a result
of the expected tax-shigliankruptcy-cost tradeflo For the second-best optimiser however, the
investment costl(— K) is no longer fixed as the coupéhincreases. For an increaseRnmore
cost is added to the levered project which reduces the egaltie of the up-and-running firm.
However, this additional cost finances an initial cash ipecof K from the debtholders which

reduces the cost of purchasing the project for the equitidrel For small coupon payments it

2%Footnote 21 of Mauer and Sarkar (2005) states that, for taesie case parametex$js monotonically decreasing
in R. Our result difers from this (even for the GBM case) indicating that the ntoniz behaviour is parameter
dependent and not a general result of the model.
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can be seen that the reduction in investment cost faced bgguigyholders is greater than the
reduction in the equity value, resulting in a metreasein total equity value prior to investment,
and hence producing a lower investment trigger price. Axthgon increases further, the ratio-
nal debtholders become more reluctant to provide additidelat while the value of equity in the
up-and-running firm continues to fall. The result being aneeluctionin equity value prior to
investment and hence a higher investment trigger price.

Finally, for some parameter regimes (higlandn,, as well as lowo, 24 andC) the first- and
second-best investment trigger prices converge, reguhindentical first- and second-best out-
comes. This would indicate that the agency cost is negégibthese regimes. Inspection of Egs.
(28) and (31), reveals that trigger pricgsand x; are equal ifV;(x) = E’'(X). This is the case
whenD’(x) = 0 sinceV,(x) := E’'(X) + D’(x). Further, it can be seen that this will be the case
for parameter regimes in which it is optimal for the equitg®ess to never default on the project.
Inspection of Eq. (21) reveals that in this case the fair@aludebt reduces t#/r, indicating that
debtholders are not concerned with default. The debt véleretore becomes insensitive to the
output price, i.e.D’(x) = 0, yieldingV;(x) = E’(x) and hencex; = x;. Note that this feature is
unique to the model under mean-reverting dynamics sinsaitvays optimal to default under the

GBM assumption.

Result 2. When it is never optimal for equityholders to default on tneled project, the first-

and second-best investment trigger prices coincide, aa@gfency-costs are zero.

We also note that there are in fact two mechanisms througbhndgency costs can disappear
in our model. The first occurs if, for a given parameter regimmanediate investment becomes
optimal for both first- and second-best outcomes. This nr@shais independent of the process
chosen. The second mechanism occurs when we are in a paraaggtee for which it is never
optimal to default on the levered project (as characteriseéroposition 7). Therefore, mean

reversion provides additional mechanisms for the redoaifaagency cost.

4.5. Equilibrium debt provision
Next we investigate the equilibrium provision of debt in firesence of agency conflicts and

mean-reverting prices. Fig. 5 represents the equilibriomownt of debt financing for a given
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coupon paymer.

*** Insert Figure 5 about here ***

Whilst it is not surprising that more debt is provided as thapon paymenR increases, the
concavity of the relationship reveals the impact of thea@ased credit risk to the debt providers
asR, and therefore the amount of debt, increases. Higher coppgments put the firm in a
worse financial position, burdened with higher financingt ¢B%, which increases the probabil-
ity of equityholders’ default. It is important to note that équilibrium the debtholders are very
reluctant to provide debt in excess of the investment ambuying. K* > I). This result difers
from the results of Mauer and Sarkar (2005), since for theselcase a particularly high value of
debt financing in equilibrium is observed, equal to an ameunnéeding 2.75 times the investment
cost3® Our model generates perhaps more realistic equilibriunt leebls for economically rea-
sonable annual coupon payments, where the first- and sdmstaptimal coupon®; = $1582
andR;, = $1303 correspond to an equilibrium debt financing of 74.13% &n@dB% of the project
cost, respectively. Only extremely high coupon paymentsdiware suboptimal for the equity-
holders) result in debt provision of more theanOne comparison to make with Mauer and Sarkar
(2005) is to consider our model with= 0 to evaluate the equilibrium debt financing fraction for
(zero drift) GBM. In this cas®; = $4401 andR;, = 25.09 corresponding t&*(R;)/I = 12836%
andK*(R;)/l = 78.51%. Thus, clearly more debt is provided in equilibrium un@8M but at the
cost of much higher coupon payments. Furthermore, thesevaldicate that the even higher debt
financing fraction in Mauer and Sarkar (2005)—275%, a numio¢reported by the authors—is

perhaps related to the positive drift of the GBM process eygi.

Result 3. Under mean-reverting dynamics, debtholders are very tahtdo provide more funding

than the purchase price of the project.

3OMauer and Sarkar (2005) suggest that excess debt is paidigisiend to equityholders at time of investment as
mentioned by the authors in Footnote 8. Hence, in their base debtholders agree to provide equityholders with a
relatively large dividend; a practice not typically obsegin actual investments.
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*** Insert Figure 6 about here ***

Fig. 6 shows the equilibrium first- and second-best firm \&lag a function of the coupon
paymentR. We observe well-defined unique maximum first- and secorst-firen values (cf.
Modigliani and Miller, 1959, Baxter, 1967). Furthermorbetoptimal first-best coupory;, is
higher than the second-best outcoRe, Therefore, equityholders maximising equity value would
not only investsoonerbut would also pick dower coupon than a manager maximising total firm
value, resulting in increased agency costs. This behawoutd also result in a lower second-best
leverage ratio at time of investment due to the lower cougyment. Economically, the incentive
for the first-best optimiser to take on more debt is a resuthefsubstantial benefits of the tax

shield in increasing total firm value.

4.6. Equilibrium comparative statics and the agency costetit

Drawing on our previous results, we now provide an invesiogeof the influence of mean
reversion on therue equilibrium outcomes, i.e. when the additional flexibildfequityholders
to select the optimal coupon paymdRitis taken into account as model parameters are varied.
Focusing in particular on the speed of mean reversion paesmsincen = 0 corresponds to
GBM dynamics—we investigate itgfect on the level of the optimal coupon itself, the investment

and abandonment trigger prices, optimal leverage and tecstgcosts of debt.

*** Insert Table 1 about here ***

Table 1 reports the comparative statics analysis of thengbttoupons, optimal trigger prices
(both default and investment), firm value, optimal leveréaenvestment), credit spreagfsand
total agency cost as the model parameters are varied. \Fesgiterate that; (R;) > x;(R;) for all
parameter regimes, demonstrating overinvestment forake when the coupon payment is also

independently optimised.

%1Defined aS; = R/D(X'(R?); RY) —r fori = 1,2 as in Mauer and Sarkar (2005).
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Focusing on the agency costs we observe that our compaséditves results for the financing
parametersi{andr) and the discount parametersand) are consistent with Mauer and Sarkar
(2005). However, under mean-reverting dynamics, we ptshoobserved that a key driver for the
gualitative behaviour of the model’s output was the long-pwofitability of the projeck - C - R,
which increases when eith&increases or costs decrease. Accordingly, inspection of Table 1

provides the following important result.
Result 4. As the long-run profitability of the project increases, aggenosts are reduced.

Fig. 7 shows the true comparative statics (allowing for thange in optimal coupon) of
several equilibrium outputs agis varied. Figs. 7(a) and 7(b) show the optimal outcomesher t
equityholders financing and timing decisions. Fig. 7(c)vehthe credit spreads, a proxy for the
willingness of the debtholders to provide debt in equilibn, and Fig. 7(d) depicts the optimal

leverage ratio of the firm upon investment.

*** Insert Figure 7 about here ***

Note that for the base case parameters we Rav€ = $3822, hence the project is profitable
in the long-run in the absence of any debt. Consequentlyijrthecan take on a coupon payment
of up to $38.22 and still remain profitable in the long-runsgaction of Fig. 7(a) indicates that
the optimal coupon payment for the second-best outcomealeethalways below this maximum
value®?

Inspection of Fig. 7 also indicated the existence of twaidistegimes of behaviour as the pa-
rametenm is varied. The first regime, foy < n., exhibits relatively high optimal coupon payments
which are decreasing gsncreases, whereas both the investment and default tnuyges and the
optimal leverage ratios remain relatively insensitive hareges in. Credit spreads are also high

in this regime. In the second regime, fpr> 7., the optimal coupon payment is increasingzin

32The first-best outcome does optimally make the the projesst-foaking in the long run for very low speeds of
mean reversion. However, note that the mean-revertindj Jesectively disappears as— 0.
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(with an associated increase in optimal leverage), therm@gtinvestment trigger price is decreas-
ing in i, and the optimal default trigger price is at a much lower & is still fairly insensitive
to changes im. Credit spreads are very low in this regime. Note that forltge case parameters

ne ~ 0.184.

Result 5. There are two distinct regimes of equilibrium behaviourtfbinancing and investing)

as the speed of mean reversipuaries, separated by a critical valug.

The non-monotonicity of the model outcomes with respeoi te a feature of the strategic
interaction between equity- and debtholders, resultingighly nonlinear behaviour. An eco-
nomic interpretation of the equilibrium outcomes exhibite Fig. 7 is as follows. Ag initially
increases above zero the expected prdfitsf the levered project increase due to the reduction
in variance around the long-run (positive) profit level. hicrease in profitability results in an
initial decrease in the (still relatively high) equilibnucoupon payment as the debtholders reduce
their credit spreads due to a lower perceived credit riskndte that at high levels of the optimal
coupon, the sensitivity of the default and investment &iggrices toy is very low? resulting
in negligible feedbackféects on optimal financing (coupon) from the optimal timingid®ns.
Hence, the financing decisions are driven mainly by the chamghe expected profit functiofy
(asn varies). However asg increases further, the associated decrease in optimaboqugyyment
results in an increased sensitivity of the trigger priceshtanges i (sincen* decreases). The
highly sensitive investment trigger prices link the optitiraing decisions and the optimal coupon
choice, therefore putting additional downward pressur&on/Ne interpret this behaviour as eq-
uityholders attempting to retain the majority of the firmey very certain) operating profits by
optimally choosing to take on minimal debt.

Note that the optimal coupon payment does not decreaseddpgrever, since there always
remains some tax-shield benefits to the equityholders]tiegun a positive minimum optimal
coupon payment. The surprising implication is that @liwaysoptimal for equityholders to default

on the project in equilibrium, even for very high values;ofAs n increases to the region in which

33This insensitively is evidenced in Fig. 4(b) and can alsodmndy evaluating the critical valugé defined in Eq.
(43); a higher;* corresponds to a lower sensitivity (for low valuespf
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it would be optimal to never default (for a fixed coupon payimsee Fig. 3(b)), the equityholders
dramatically reduce their coupon payment so that defaillltemains optimal at stliciently low
prices. Economically this implies that there is always soneentive for the equityholders to
transfer wealth from the debtholders.

At the start of the highy regime, the optimal coupons are very low and the profitghditthe
project is very certain (due to both a low variance and lowpmoupayments). This results in a very
low default trigger price and an ever decreasing probgiwlitdefault as; increases further. This
causes credit spreads to plummet, expressing a decreasbtimottlers’ concern about project
default. However, since debt is now verffadable for equityholders to employ, and given the
very low expected bankruptcy costs, the optimal coupon geyrstarts to increase i causing
expected operating profits to increase further. Hence imitjer regime more debt is employed

to maximise the expected benefits from the tax shielgliasreases further.

*** Insert Figure 8 about here ***

*** Insert Table 2 about here ***

Fig. 8 shows the total agency cost and its decompositionti@awo components (as defined
by Eq. (33)) as a function of the speed of mean revergithin addition, Table 2 also shows the

remaining agency cost comparative statics for other maoakapeters.

Result 6. The agency costs decrease (approximately linearly) aspgbhed of mean reversiop

increases and they become extremely small above a critidaé\ofn (~ 0.184for our base case).

Furthermore, in regards to Fig. 8 we see that, consisteht Rribposition 5, the agency cost

due to financing and timing decisions are both positive amd/éoy low n the total agency cost

34n addition, we further decomposed the agency costs intda®in pure operating value and the loss in net
benefits of debt financing, in the spirit of Mauer and Sark@08). However, details are omitted in the interests of
brevity but the results are available from the authors upouest.
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is evenly split between the financing and timing componehrtswever, as; increases the im-
pact of (suboptimal) timing decisions becomes more immbrative to (suboptimal) financing
decisions.

Finally, in order to investigate thefect of the growth prospects of the debt financed project
we also choose to perform comparative statics for the GBM gath drift « # 0, obtained by
settingxX = 0 andn = —a. Results can be found at the bottom of Table 2. We conclude fras

our final result.

Result 7. The agency cost due to (suboptimal) financing decisioa®asess the growth rate
a increases whereas the agency cost due to (suboptimal)gidenreasesresulting in a fairly

constant total agency cost.

Furthermore, the total amount of the agency cost is foundetagproximately 8-9%, which
is consistent with the values reported in Mauer and Sark@g0Fp The implication of the above
result is that the relatively large agency costs reportedanier and Sarkar (2005) appear to be

due to the non-stationarity of the output price dynamics.

5. Conclusions

In this paper, we have shown that the choice of the unceytamicess used to model (lever-
aged) investment project cash flows can have a significaraetgn investment timing and related
project financing decisions. The application of a mean+tewg (MR) process to our proposed
model has revealed important equilibrium results with eespo the investment, default, and fi-
nancing strategies of equityholders, as well as the optilelt provision of rational debtholders.

Under MR dynamics debtholders are very reluctant to promdee funding than the purchase
price of the project, a result more consistent with obsemnaedstment practice than the existing
geometric Brownian motion (GBM) based results. Furtheenae observed two distinct regimes
of equilibrium behaviour, dependent on the level of a key M&pss parameter, the speed of mean
reversion; demonstrating the increased complexity of tiglierium financing and investment

outcomes in the presence of MR dynamics.
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In regards to the reduction in firm value due to agency cosf(itte agency costs) our results
indicate that total agency costs are lower for a higher spéadean reversion and also for a
higher long-run profitability of the debt-financed projedoreover, due to a novel agency cost
decomposition, we have shown that under low-growth cashsflowodelled using GBM with
zero or negative drifts) agency costs are driven mainly hytglolders’ (investment and default)
timing decisions rather than due to their financing decisions. @rother hand, for high-growth
projects (modelled using GBM with positive drifts) it is thquityholdersfinancingdecisions that
contribute the greatest to agency costs. Assuming a deglectease agency costs in an economy,
the above information about the underlying components aiverd of such agency costs would
be valuable to both policy makers and regulators alike.

Future work in this area could include the extension of theeru analysis to firms that have
existing operations financed with pre-existing debt, tfeeeeanalysing theféect of mean rever-
sion on possiblendeinvestment and the relateébt overhangroblem (see Moyen, 2007). The
inclusion of some information asymmetry between equitgbd and debtholders could also be
another direction for future research. Technical extersioay include accounting for jumps in

the underlying price dynamics.
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Appendix A. Derivation of risk-neutral price dynamics: Eq. (2)

To transform process (1) into one under the equivalentmeskiral measure Q we follow Dixit

and Pindyck (1994) and first divide Eq. (1) Byto obtain the rate of change &f

dX _ a(X) o(X)
X =% dt+ X dWf.

Taking expectations yields the expected percentage chang€or expected capital growth rate)

denoted bya(X)*
dX
. P
a(Xpdt:=E [_Xt

_ a(X)
=X dt.

Next, it is well known that under the risk-neutral measure pinocess must have the following
dynamics

dX = (r — 6(X)) Xdt + o (X)dWR

wherer denotes the risk-free rate of return a¥(X) the (explicit or implicit) dividend or conve-
nience yield. In the case of commodity prices such a connerigield is not directly observable
and therefore must be implied. To do so we note that the tgfmaed rate of return on a com-
modity, denotedi(X), must be equal to the expected capital apprecia(®), plus the implied
dividend; in other wordg:(X) = a(X) + 6(X), from which weimply that 6(X) = u(X) — a(X).
Substituting forv(X) anda(X) yields

dX = (@(X) — (u(X) = NX)dt + o(X)dWE. (A.1)

35Note that, technically, we are required to justify that tlpextation of the I1td integral is zero, i.e. it is a true
martingale and not strict local martingale For all cases considered in this paper this is indeed threestaser(X) /X
will become a constant.
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To determine the total expected return on the commodity vpealpto equilibrium pricing argu-
ments. Furthermore, since it would appear that there are nek factors involved in commodity
investments than simply market risk we choose to employ di+fagtor model® In this case the
expected total return (in excess of the risk-free ratenisdrly proportional to the expected excess

returns ofN risk factors and is given by the following pricing relatioms

N
p) =1 =" B - 1) (A-2)
i=1

wherey; is the expected return of thih risk factorF; andg;(X) is the sensitivity of the commodity
X to this factor. Note that we allow this sensitivity to be degent onX. The above equation can
be modified by noting that, by definitiog,(X) = cov(dX/X, dF;/F;)/var@dF;/F;) = o(X)pxi/ X
whereopy; ando; denote the correlation of the commodiyand thath risk factor, and the volatility
of this factor, respectively. Using the above relationskgcan perform the following manipula-

tions

WO -1 = Z"(X;’I’X'(p—)—"()z (1) "(X)Z pai = T (a3)

wherek; denotes the market price of risk for thh risk factor and we have defined the parameter
A = pxik1 + pxek2 + ..., t0 be interpreted as the (theoretically justificgharpe ratioof the
commodityX. Note that in the case when(X) = o X (the case considered in Section 3) we see
that the risk-premium does not depend on the price [Bvélinally, substitution of Eq. (A.3) into

Eqg. (A.1) yields the required result

dX = (a(X) — Ao (X))dt + o (X)dWE,

and completes the derivation.

36A multi-factor model allows for more flexibility in modellgthe risk-premium and its economic sources. For
example, itis well know that, historically, the correlatiof commodity prices (oil in particular) with the equity nkat
are very low, hence there is limited equity beta in commaeditiUnder the assumption of a single factor model such
as the CAPM, the resulting risk premium would be close to fer@ven negative).
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Appendix B. Reformulation of Eg. (3) into Eq. (5)
AssumingES fom e my(X)|dt < oo we have the following manipulations

Ta 00 00
Vy(X) = SUPE? f e "my(X)dt = supES [ f e ", (X)dt — f e‘”nu(xt)dt]
Ta 0 Ta 0 Ta

=E? fo e "y (X)dt + STUIOE?[— fT e‘”nu(xt)dt]

: fu(X) + SUpPER [— f e‘r(S‘*Ta)nu(XMa)ds] (settingt = s+ T,)
T 0

a

fu(X) + SUpES |E, [— f e‘r(ma)nu(xma)dsﬁ:” (tower law property)
Ta L 0
= fu(X) + SUpE? | -T2 f e Ry [nU(XyTa)lTé]ds] (Fubini’s theorem)
Ta L 0

= fu(X) + SUpED |- T2 f € "Ex,, [1u(Xs)] ds] (Markovian shift)
Ta L 0

= fu(X) + SUPER |- T*Ex,, [ f e‘rsnu(xs)ds” (Fubini's theorem)
Ta L 0

= fu(X) + SUPER [e ™ (- fu(X1,)| .
Ta

Appendix C. Proof of Proposition 1

Proof. To prove the existence and uniqueness¢phind x; we need only consider the levered

equation
@ _¢@
f(d ¢

since the solution for the unlevered project is simply a edease of the above wheR = 0.

(C.1)

A cursory inspection of Eq. (C.1) indicates that siRge) is positive and decreasing arig(2)
is increasing, that any solution to this equation must oacuhe region where,(z2) < 0 orz €
(0, f,1(0)). To analyse the equation further we rearrange the absviellows (with the aim of

producing better behaved left and right hand side funcjions

WD) @
o T -
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ff(zi?é)ffl @ andgms@ = % If it can be shown that one of these
4

functions is non-decreasing and the other non-increasieg Wwe have uniqueness of the root of

We thus defingng(2) =

Eq. (C.1). For existence, we need to consider the limitinga®ur of these functions as— 0
andoo.

Consider firsghs. Differentiation of this function yields

¢'(2
¢'(2

Orns(2) = i) B LA

+¢(Z)(¢(z) e

Theorem 1 in Alvarez (2003) states that, provided infinity matural boundary for the procesga
standing assumption in the present paper) then the fundahsetutionsy andy, are convex if and
only if the auxiliary functiord(2) := rz+10(2)—a(2) is non-decreasing, i.e. whemlo'(2)—-a'(2) >
0. For all cases considered in Section 3 this condition vélkhtisfied, hence it can be seen that
Orhs(2) IS non-increasing.

Next we wish to consider the limits of,s(z2) asz — 0 andz — . The following limits of the

fundamental SO|UtiO¢ are well knowr’
lim ¢(2) = oo, lim #(2) =0, li (]5/ =0.
| N (Z) I (Z) Im (Z)

Furthermore, it can be shown that if zerasn-attractingin the sense that ligy S(z) = oo, where
S(2) denotes thecale functiorof the dffusionX, then lim, o ¢’'(2) = —co. The above limits thus
indicate that both limits of,s(z) are ofindeterminate formtherefore in order to compute them

we must apply 'Hopital’s rule as follows

(62 - z¢'(2)

) mea =L

lim 2) =lim
z—L grhS( ) Z—>L(

whereL = 0, co. Hence we have shown thgt,s(2) is non-increasing with limitgy,s(0+) = 0 and

Orhs(00—) = —oo.

3"For more details see Borodin and Salminen (2002). The first is guaranteed by the natural or entrance (not-
exit) boundary at zero, the second limit is a result of theirstboundary at infinity and the third limit is true for all
diffusions since is a positive monotone decreasing function.
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Consideringg,s Wwe can calculate its derivative to be

(21 (2)

Ohs(2) = _f’—(z)
¢

from which we see that, provideg(z) is convexgihs(2) will be non-decreasing in the region where
f/(2) < 0. Furthermore, sinc&(2) is increasing for alk we can deduce tha,s(z2) < 0 whenever
f((2) < 0. In sum,gins(2) is non-decreasing for aland negative over the intervak (0, f,1(0)).
Coupled with our knowledge @h<(2) this proves the existence and uniqueness of a solution.to Eq
(C.1) provided thaf,(2) is convex and negative for at least sonie the state space of the process,
that the auxiliary functiom(z), defined above, is non-decreasing, and that zero is a mi@ctatg

boundary for the process. O

Appendix D. Proof of Corollary 2

Proof. The result follows from the fact thahs(z R) = 113 —z = 280200 — 7 < ging(z 0), hence
4 u

Ons(2) for the levered project is dominated bys(2) for the unlevered project. Recalling also that
Oms(2) defined in Appendix C is non-increasing it follows directhat x; < x; and the proof is
complete. O

Appendix E. Derivation of Eq. (21)

The debt value (fok > x;) can be calculated using the following (trivial) manipidats

-
D(x) = EQ " e"Rdt+ e"Ta(1 - b)Vy(Xr:)
X 0 d

Q Td —rt Q[ I
= RES fo e"tdt+ (1 - b)Vu(x)ES [¢ 4]
= ?(1 ~EQ[e"M4]) + (1 - b)VU(Q)ED [e™T4]

= h(@-bVi) - T B9[]

R . R) o(X)
=+ ((1 _B)Vu(X) - ?) ]
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Appendix F. Derivation of Eq. (22)

To derive Eq. (22) we first substitute Eqgs. (18) and (21) imgo @3) and rearrange to yield

Vi (X) = E(X) + D(X)

6 | #09
= 100~ 109305 + 1+ (- D0 - ) 5
B0 oo oo @) R Ry 409
- BV 100 — 10+ (Vo) ) S

PV of bankruptcy cost

Furthermore, usind,(x) = f,(x) - R(1 - 7)/r we see that

$(x3) $(x3) $(x3) P(x)

PV of tax shield

Vi) = -BV0) SR 1,00 - 1,0) 2 (1 ¢”) Vo) 2% (R

Finally we recall from Eq. (10) that

¢(x3)
$(x3)

Vu()g) = fu()q) - fu()g)

and substituting in to (F.1) yields

_ o9 o9 509
V8 = 109 = 1085 + (1 85 - b5
R(, 49 49

-t + ¢(x;;)) ReTeR

as stated.

Appendix G. Proof of Corollary 4

Proof. Defining the function

(2
¥(2)

92 = (Ve(@ - 1)
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we see thak] andx; solveV;(x;) = g(x;) andE’(X;) = g(X;) respectively. Furthermore it is a
straightforward matter to show thgt(x;) > 0 andg’(x;) > 0 using the following arguments. We

have

9@ =V

)

v'(2 v'(2 [w”(z) _ w’(Z)]
(2 v@ lv@ v

and thus az = x;, after identifying thatV,(x) — w (x*) = V/(x]) from the first order condition,
1 1 1

we have
Y (X)) S
(X))

since we have seen (from the proof of Proposition 1) thad convex under the condition that

g'(x) = Vi(xq)

0(2) = rz - a(2) + Ao (2) is non-decreasing. Applying the same procedue-ak;, yields

x|
u( *)

preo)
lﬁ’(Xz) -

g(%G) = D'(x) E'(%)

sinceD’(2) > 0 andE’(2) > O for all z. Finally it is also clear that
V2=E@+D((@=E(©®, Vz

To summarise, we have that the roatsand x; both occur whenV;(z) and E’(2), respectively,
cross the functiomy(z) with a positive slope and that/(z) dominatesE’(z). Thus is is clear that

the rootx] must be greater that,. O

Appendix H. Proof of Proposition 6

Proof. To calculate the fundamental decreasing and increasingico$, ¢ andy we substitute
a(X) = n(X - X;) ando(X;) = oX; from Eq. (34) into the general ODE in Eq. (9) which, after
rearranging, yields

%o-zxzu”(x) + (X — (n + A0)X) U (X) — ru(x) = 0. (H.1)

In order to solve this equation we transform it to the staddarm of the so-called Kummer’s

equation for which the solutions are well understood (Alvasitze and Stegun, 1972, Chapter 13).
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To do this we first leti(x) = X'v(X), wherey is to be determined, and then let 2;X/0?x to yield

2V'(2) +(2—27+ @ —z))\/(z)+(7+%((y— 1)y - 2 +;f)_2r))v(z) - 0.

The next step is to choosesuch that

%0'27/(7/ -1)—y(n+A0)-r=0 (H.2)
to obtain
V(D) + (n-2V (2 —mu2) =0, (H.3)

which we identify as Kummer’s equation with= 2 — 2y + @ andm = —vy. Itis well known
that Eq. (H.3) has two independent solutiafi® = U(m, n; 2) andv(z) = M(m, n; 2 which are
called, respectively, Kummer’s and Tricomi’s confluent éggeometric functions. Furthermore, it
can be shown thdtl(m, n; 2) is strictly decreasing anli(m, n; 2) is strictly increasing fom > 0.
To ensure this is the case we are required to jaicebe thenegativeroot of Eq. (H.2). It can also

be verified that andy are strictly decreasing and increasing respectively. O
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Figures
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Figure 1. Unlevered and levered project valgex) andV,(x) as a function of the initial output
price x (solid line = V,(x), dashed line= V,(x), dotted line= D(X), dot-dashed line= E(X); for
base case parameters).
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Figure 2: Value of the first- and second-best investmenbapf; andF;) as a function of the
initial output pricex (solid line= second-best optioR,, dashed line- first-best optiorF,, dotted
line is the value of the levered firivi,(X) less investment cost for base case parameters — except
we useR = $50 for emphasis). Note the smooth pasting of the first-bestome but not the
second best.
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Figure 3: Default and abandonment trigger prisgsnd x; as a function of (a) long-run mean
price levelX, (b) speed of mean reversian (c) process volatilityr, (d) risk-free (real) interest
rater, (e) Sharpe ratio of oil, (f) variable cost<, and (g) debt coupon paymeR({(solid line=

x;, dashed line= x;; for base case parameteis:= $9822,n = 0.1733,0 = 0.274,r = 0.04,

A =032,C = $60,R = $1303,7 = 0.3 andb = 0.35). Note that these comparative statics are
produced for fixed coupoR.
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Figure 4. The first- and second-best investment triggerepras function of (a) long-run mean
price levelX, (b) speed of mean reversiagmn (c) process volatilityr, (d) risk-free (real) interest
rater, (e) Sharpe ratio of oil, (f) effective tax rate, (g) variable cost€, (h) debt coupon payment
R, and finally (i) investment cost(upper solid line= x;, upper dashed line x;, lower solid line
= X, lower dashed line= x;; for base case parameteng:= 0.1733,X = $9822, 0 = 0.274,
A =032,r =0.04,7 = 03,b =0.35C = $60,R = $1303 andl = $180). Note that these

comparative statics are produced for fixed couRon

49



K*/I

15 ”‘,——
10 ---------- O AR R R

0.5

S T S S H S S S B SRR
20 40 60 80 100 120 140

Figure 5: The equilibrium debt financing ratk¢*/l1 as a function of the annual debt coupon
paymentR (solid line = second-best outcome, dashed lindirst-best outcome; for base case
parameters). Note the debtholders are very reluctant eoagy debt over the required investment
for the project (dotted lineK* = 1I).
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Figure 6: The first-best (dashed line) and second-bestd(tak) firm value, as a function of
the coupon paymerR (for base case parameters). Note the first- and second-besvdiue

maximising coupon payments.

50



o 1

I I I I I I I
0.05 0.10 0.15 0.2C 0.25 0.30 0.35 77 0.00 0.05 0.10 0.15 0.20 0.25 0.30

1001
1500 [

1000

500

P SR B S R R B n n i T S S SR SR N L I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 n 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 7]

() (d)

Figure 7: Comparative statics (in equilibrium) wigof (a) optimal coupon payment, (b) optimal
investment and default trigger prices, (c) equilibriumditrgpreads, and (d) optimal leverage ratio
at time of investment. (solid line second-best outcome, dashed lindirst-best outcome; for

base case parameters).
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Figure 8: Comparative statics (in equilibrium) of total agg cost (solid line) withy and its
decomposition int?AC'™ (dashed line) andC'"™ (dot-dashed line)—see Eq. (33); for base case

parameters.
51



A

Table 1: Comparative statics of the first-best and secostdmimal financing and investment decisions in equilitoriu

Optimal Investment Firm value Agency Optimal Default Ctexiread
coupon trigger cost (%) leverage trigger (basis points)
R R X % Fu(X) FX%) AC L xR) x®) CS CS
Base Case 15.82 13.03 141.10 136.49 44.88 44.50 0.87 47.0319 43 52.07 48.77 785.60 701.01
Base Casey(=0) 44.01 25.09 150.70 136.69 46.29 42.70 8.40 60.01 45.18 3575. 61.65 1,504.51 1,375.29
X =60 35.90 28,57 175.89 167.80 3.22 3.05 5.57 56.19 50.67 78.892.30 2,200.65 2,088.83
X =80 28.92 23.13 161.74 154.22 11.86 11.42 3.81 54.00 49.01 6869. 64.21 1,682.69 1,577.95
X =120 12.49 12.49 90.46 90.33 303.28 303.28 0.00 64.16 64.16 .7823 23.78 2.80 2.80
X =140 2435 24.35 73.42 73.00 593.75 593.75 0.00 78.40 78.40 .3626 26.36 1.42 1.42
n=0.1 29.97 22.11 150.78 141.17 37.91 36.46 3.99 55.16 48.26 .5866 59.53 1,353.22 1,244.71
n =0.15 22.03 17.61 146.89 140.10 39.70 38.93 1.98 51.03 46.549.135 5459 1,088.48 993.74
n=0.2 3.29 3.29 123.87 123.78 69.43 69.43 0.00 27.63 27.65 924.724.79 17.18 17.18
n =0.25 7.80 7.80 100.02 99.96 150.01 150.01 0.00 58.58 58.59 .6024 24.60 3.40 3.40
o =0.20 6.14 6.14 96.24 96.11 139.38 139.38 0.00 46.95 46.95 5030. 30.50 9.50 9.50
o =0.25 2.88 2.88 125.62 125.37 58.08 58.07 0.00 21.94 21.98 8829. 29.88 70.05 70.09
o =0.30 21.84 17.48 153.75 146.95 39.24 38.62 1.59 49.69 45.367.505 52,96 1,117.53 1,011.46
o =0.35 30.58 23.36 173.98 163.84 36.36 35.49 2.44 5152 45.983.366 56.68 1,550.10 1,409.53
r =0.01 3.48 348 107.67 107.66 380.37 380.37 0.00 59.94 59.957.021 17.02 0.42 0.42
r =0.03 1.72 1.72 134.27 134.11 66.29 66.29 0.00 15.96 15.98 2526. 26.25 61.18 61.19
r =0.05 19.33 16.02 144.85 139.43 33.42 32.97 1.35 49.54 45.966.415 52.76 928.61 841.00
r =0.07 24.47 20.41 151.36 145.12 20.69 20.27 2.07 52.51 48.872.466 58.28 1,089.72 997.86
1=0.20 7.19 7.19 106.39 106.27 194.32 194.32 0.00 45.31 45.352.692 22.69 7.10 7.10
1=0.30 11.67 9.42 136.02 132.88 57.33 57.13 0.35 42.41 38.57 .9045 42.79 539.06 456.40
1=0.40 23.06 18.95 155.11 148.94 18.04 17.63 2.32 51.18 47.152.886 58.67 1,352.55 1,255.95
1=0.50 28.15 23.39 168.58 162.11 5.81 5.61 3.50 53.02 48.96 5870. 65.95 1,821.75 1,721.21
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Table 1: ¢€ontinued.

Optimal Investment Firm value Agency Optimal Default Cteyfliread
coupon trigger cost (%) leverage trigger (basis points)
R R X X,  Fi(Xo) FaoX) AC L, x(R) x[R) CS, CS

Base Case 15.82 13.03 141.10 136.49 44.88 44.50 0.87 47.0319 43 52.07 48.77 785.60 701.01
Base Case(=0) 44.01 25.09 150.70 136.69 46.29 42.70 8.40 60.01 45.18 3575. 61.65 1,504.51 1,375.29
7=0.15 222 220 132.67 132.35 65.74 65.73 0.00 12.48 12.43 3531. 31.30 183.37 182.21
7=0.25 10.32 8.94 138.19 135.50 50.82 50.68 0.28 36.36 33.98 .3245 43.45 580.11 530.71
7=0.35 20.60 16.43 144.05 137.56 39.63 38.92 1.82 54.66 50.497.385 52.77 954.37 838.84
7=0.45 28.82 21.96 150.38 140.18 30.56 29.11 499 65.35 60.745.916 58.84 1,242.86 1,070.99
C =50 9.38 938 8249 8239 23578 235.78 0.00 55.95 55.95 19.759.75 3.24 3.24

C =55 469 469 107.74 107.66 114.36 114.36 0.00 36.90 36.92 5721. 21.57 9.46 9.46

C =65 24.01 19.32 159.19 152.12 27.03 26.43 2.28 5149 47.03 1166. 61.32 1,279.79 1,180.70
Cc =70 28.74 2272 172.35 164.10 18.69 18.11 3.21 53.33 48.21 6675. 69.80 1,563.13 1,454.89
b=0.15 27.61 19.78 138.81 130.90 50.15 48.67 3.04 65.30 58.084.696 56.50 1,059.34 867.00
b=0.25 21.32 16.49 140.11 133.88 47.16 46.37 1.71 56.32 51.138.165 52.84 921.74 792.29
b =0.45 1095 9.54 141.76 138.65 43.22 43.06 0.37 37.36 35.17 .1546 44.27 641.56 590.41
b =0.55 6.81 6.30 142.10 140.30 42.09 42.04 0.12 27.50 26.54 3140. 39.50 485.63 462.23
| =100 10.58 8.66 116.70 112.95 91.56 91.12 0.48 4458 41.11 6645. 43.05 661.23 582.44
| =140 13.00 10.66 128.22 124.05 65.12 64.70 0.66 45.87 42.33 .7248 45.77 724.95 642.28
| =220 18.99 15.76 155.25 150.16 30.20 29.87 1.10 48.02 44.54 .6355 52.00 840.90 756.35
| =260 22.44 18.77 170.47 164.88 20.02 19.76 132 4882 45.44 3559 55.39 889.52 806.20
a =-0.08 44,42 31.75 176.85 166.34 3.67 3.39 8.18 59.26 50.35 .9685 75.53 2,352.50 2,223.84
a =-0.04 43.38 28.34 163.62 151.73 13.29 12.27 8.31 59.61 48.381.06 69.27 1,947.23 1,816.68
a =0.04 49.49 2285 139.30 121.51 163.21 150.49 8.45 60.48 340.568.47 51.81 1,022.25 901.47
a =0.08 75.58 25.48 13296 106.27 680.95 627.37 8.54 61.24 534.760.15 37.92 537.50 433.43




Table 2: Comparative statics of agency costs and its timmgfimancing components.

AC ‘ ACfin  actm AC ‘ ACfin  Actm
Base Case 0.87 0.18 0.68 Base Case 0.8Y 0.18 0.68
Base Case(=0) 8.40| 3.95 4.45 Base Case(=0) 8.40| 3.95 4.45
X =60 5,57| 1.24 4.32 7=0.15 0.00| 0.00 0.00
X =80 3.81| 0.84 2.97 7=0.25 0.28| 0.05 0.23
X =120 0.00| 0.00 0.00 7=0.35 1.82| 0.43 1.38
X =140 0.00| 0.00 0.00 7 =0.45 4.99| 1.35 3.63
n =0.10 3.99| 1.16 2.83 C =50 0.00| 0.00 0.00
n =0.15 1.98| 0.45 1.53 C =55 0.00| 0.00 0.00
n =0.20 0.00| 0.00 0.00 C =65 2.28| 0.50 1.78
n =0.25 0.00| 0.00 0.00 C =70 3.21| 0.74 2.47
o =0.20 0.00| 0.00 0.00 b =0.15 3.04| 1.01 2.03
o =0.25 0.00| 0.00 0.00 b =0.25 1.71| 0.46 1.25
o =0.30 1.59| 0.36 1.23 b =0.45 0.37| 0.06 0.31
o =0.35 2.44) 0.63 1.81 b =0.55 0.12| 0.01 0.11
r =0.01 0.00| 0.00 0.00 | =100 0.48| 0.11 0.37
r =0.03 0.00| 0.00 0.00 | =140 0.66| 0.14 0.51
r =0.05 1.35| 0.28 1.08 | =220 1.10| 0.22 0.88
r =0.07 2.07| 0.42 1.64 | =260 1.32| 0.26 1.07
1=0.2 0.00| 0.00 0.00 a =-0.08 8.18| 2.55 5.62
1=0.3 0.35| 0.09 0.26 a =-0.04 8.31| 3.15 5.15
1=0.4 2.32| 0.46 1.86 a =0.04 8.45| 4.98 3.48
1=0.5 3.50| 0.65 2.85 a =0.08 8.54| 6.24 2.30
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