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Abstract

We analyse the effect of differing uncertainty assumptions on the costs of shareholder-bondholder

conflicts arising from partially debt-financed investments. A partial equilibrium model, valid for a

large class of diffusion processes, is developed and then applied to the specific cases of a geomet-

ric Brownian motion (GBM) and a mean-reverting (MR) process. This allows for the comparison

of the two scenarios and contributes to the ongoing discussion on the effects of mean reversion

on investment and financing behaviour. We find that agency costs are much lower under MR dy-

namics and, through the application of a novel agency cost decomposition, we show that for a

high expected growth in future profits (high growth GBM) agency costs are driven mainly by sub-

optimalfinancingdecisions, as opposed to suboptimal (default and investment) timing decisions.

The situation is reversed for lower growth assumptions and for an increase in the speed of mean

reversion. Our results on the components and drivers of agency costs are valuable to both policy

makers and regulators alike.
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1. Introduction

The bulk of the existing real option literature assumes uncertain output or input prices to fol-

low geometric Brownian motion (GBM) (Dixit and Pindyck, 1994). While this modelling choice
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often provides tractable solutions it has been criticised in relation to its suitability for describing

equilibrium price processes (Lund, 1993). It has also been suggested that such price dynam-

ics, particularly in commodity markets, can be more accurately modelled using a mean-reverting

(MR) process (Schwartz, 1997). Crucially, it has also been argued that the failure to account

for the effects of mean reversion can lead to “systematic biases in capital budgeting decisions”

(Bessembinder, Coughenour, Seguin, and Smoller, 1995).

Motivated by the above, an important line of research, initiated by Metcalf and Hassett (1995),

has attempted to assess the appropriateness of the use of GBMas a substitute for more realis-

tic mean-reverting dynamics when considering firms’ optimal investment decisions. The present

paper continues this line of research by considering the effect of mean reversion onleveragedin-

vestment projects. The addition of leverage into the problem extends the previous analysis to a

much more realistic and economically meaningful setting, however it requires the explicit con-

sideration of the optionality of the equityholders to default on the levered project; resulting in a

two-layered optimal stopping problem. Because of this two layered structure, and the assumption

of strategic debt financing, the effect of MR on optimal investment in this setting is, unsurprisingly,

more complex.

Furthermore, the inclusion of leverage into this framework, while complicating the analysis

and introducing an equilibrium aspect to the model, does allow us to also evaluate the effect of

mean reversion on the optimalfinancingdecisions of firms and to investigate theinteractionof the

financing and investment timing decisions.1 To our knowledge the effect of mean reversion on this

interaction has not previously been studied.

This research therefore contributes to the literature on real options and stochastic price mod-

elling as well as to the literature on corporate financial policy and related agency conflicts. The

specific research questions we address are: (i) what are the characteristics and interaction of a

firm’s optimal investment, default, and financing strategies under the assumption of mean-reverting

output prices? (ii) what are the implications of mean reversion for investment values and agency

1Since Modigliani & Miller’s ground-breaking work on optimal capital structure (Modigliani and Miller, 1959,
Baxter, 1967) investment valuation has been closely linkedto questions of optimal corporate financial policy. Finan-
cial structure is important for the valuation itself because it influences the policy that governs cash flow control, which
in turn affects cash flows and the project value (Brennan and Trigeorgis, 2000).
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costs? and (iii) how do these results compare to those obtained under GBM dynamics?

To date, three effects of mean reversion on investments have been identified. Metcalf and

Hassett (1995) identified thevariance effectin which mean reversion reduces the long-run variance

of a project’s cash flow (compared to GBM), thus resulting in lower investment trigger prices and

sooner investment. However, these authors also pointed outa second competingrealised price

effect. Here, the stationarity of the mean-reverting process implies that the probability of reaching

a given level is also reduced, potentially offsetting the variance effect. Metcalf and Hassett (1995)

concluded that GBMcouldbe considered as an appropriate substitute for MR since the probability

of investment under GBM and MR dynamics are comparable, resulting in no significant difference

in cumulative investment.

Sarkar (2003) extended Metcalf and Hassett’s arguments by incorporating a third so called

risk-discounting effect. Under mean reversion, a lower cash flow variance also affects the project’s

risk-adjusted required rate of return and hence the discount rate used for valuation; affecting both

the project value and the value of the real option to invest inthe project. In contrast to Metcalf

and Hassett (1995), Sarkar (2003) concluded that mean reversiondoeshave a significant impact

on investment when all three effects are correctly accounted for.

Finally, in a more recent contribution to this literature, Tsekrekos (2010) examined the effect

of mean reversion on reversible entryandexit decisions of firms; thus incorporating the possibility

of reversibility and disinvestment into the previous analysis. Similar to Sarkar (2003), Tsekrekos

(2010) also reached the conclusion that it would be erroneous to use the more tractable GBM pro-

cess as an approximation for a mean-reverting process in models of aggregate industry investment.

We note that Tsekrekos (2010), nor the previous papers, considered a setting in which leverage was

present.

An important consequence of the inclusion of leverage is that it introduces the potential for

conflicting interests of shareholders (borrowers) and bondholders (lenders).2 This introduces the

concept ofagency costsas a fundamental quantity in our investment and financing problem (Jensen

and Meckling, 1976).3 Existing literature has analysed the direction and magnitude of the agency

2In the following, we shall use the termsequityholders anddebtholders to maintain generality.
3Our model assumes that the investment decision-makers (managers) are the shareholders and so we focus on the
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costs resulting from over- or underinvestment. When new projects are financed solely by equity,

some researchers have concluded that equityholders tend tounderinvest, because they bear all the

cost of the investment while sharing the benefits with debtholders (Mauer and Ott, 2000, Moyen,

2007, Titman and Tsyplakov, 2007). In contrast to this, whenprojects are at least partially financed

by new debt, equityholders tend tooverinvest due to the incentive to transfer wealth from the

debtholders to themselves (Leland, 1998, Mauer and Sarkar,2005).

In the context of leveraged investments, the model of Mauer and Sarkar (2005) is particularly

appealing as it presents the agency conflicts using a two-layered real option framework; one being

the project investment option, the other being the default option after investment. This setup allows

the rational debtholders to incorporate the equityholders’ strategy of equity value maximisation

when deciding on how much debt to provide and at what price. Therefore, in light of the signifi-

cance of the effects of mean reversion on investment timing decisions, we extend the (GBM based)

model of Mauer and Sarkar (2005) in the present study to a moregeneral analysis, incorporating

the risk-discounting effect of Sarkar (2003), and allowing for the consideration of mean-reverting

dynamics; thus providing insights into their effects on both investmentandfinancing decisions.

The GBM based results of Mauer and Sarkar (2005) find that equityholders’ incentive to over-

invest significantly decreases firm value and optimal leverage, reporting a 9.4%lossin firm value

and a reduction in optimal leverage from 66% to 39% for their base case parameters. Our analysis

reveals similar results under GBM—8.4% loss in firm value anda reduction in leverage from 60%

to 45%—but that under mean-reverting dynamics the reductions in firm value and optimal lever-

age are much smaller, finding only a 0.9% loss in firm value4 and a reduction of optimal leverage

from 47% to 43% for our base case parameters. These results indicate that the growth rate and

stationarity assumptions of future cash-flows have a significant impact on the equilibrium effects

of the agency conflict.

In sum, this research extends the current literature in the following ways. Firstly, we generalise

agency conflict between shareholders and bondholders. Whenthe decision makers are not the shareholders, there
could be additional conflicts of interests between shareholders and managers (cf. Cadenillas, Cvitanic, and Zapatero,
2004, Morellec, 2004).

4Note that Leland (1998) also found around a 1% loss in firm value due to overinvestment for his base case
parameters under GBM. However, Leland (1998) did not account for the effect of capital structure on firm valuation
whereas Mauer and Sarkar (2005) and our analysis do.
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the model of Mauer and Sarkar (2005) to a wide class of diffusion processes and to incorporate

the risk discounting effect as proposed by Sarkar (2003). We then apply GBM and MR dynamics

to our general model to assess the effect of mean reversion on leveraged investments. Secondly,

we present an alternative solution methodology to Mauer andSarkar (2005) based upon diffusion

theory, which provides important additional insights intoexisting and new results. Thirdly, when

considering the agency costs of overinvestment, we proposea novel agency cost decomposition

into the costs due to suboptimalfinancingdecisions and those due to suboptimal (default and

investment)timing decisions. Finally, we extend Mauer and Sarkar (2005) by parameterising our

model using real (commodity) asset price data.

The remainder of the paper is structured as follows. We develop the extended version of the

Mauer and Sarkar (2005) model in full generality in Section 2. We then apply both GBM and

MR uncertainty processes to the general model presentationin Section 3 and provide results and

conclusions in Sections 4 and 5 respectively.

2. Generalised Model

In the following we develop a generalised extension of the Mauer and Sarkar (2005) model.

Our intention is to setup the model so as to allow for a presentation that is independent of the spe-

cific uncertainty process used to model output prices. Such apresentation illustrates which model

results remain valid with a high degree of generality (i.e. independent of the chosen uncertainty

process) and which are not so easily generalised.

We begin by modelling theinner option, representing the value of the unlevered project, or in

the presence of debt financing that of the levered project,after investment. Given the investor’s

ability to abandon the project and file for bankruptcy the valuation of the inner option requires

the determination of the optimal abandonment strategy. In the case of the levered project, such

abandonment is labeled as default. Next, we evaluate theouter option, which represents the value

of the investment project to the investorbeforeinvestment. This option must account for uncertain

future output prices, the investor’s optimal timing decisions, and the lender’s optimal decision on

providing debt. As such, a strategic equilibrium (under complete information) between investor

(equityholders) and lender (debtholders) is determined.
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The investment project is assumed to represent a productionfacility for a commodity that

produces one unit of the commodity per year at a constant costC per unit, which can be sold at

the (uncertain) price (Xt)t≥0. Per period profitsXt − C are taxed at the constant effective tax rate

τ.5 The project is subject to initial investment costsI and both the underlying project and the

option to invest are assumed to have infinite time-horizons.Financing of the project is assumed

to be undertaken by a mixture of both equity and perpetual debt, where the latter is denotedK.

In exchange for the financing amountK, equityholders are required to pay a periodic coupon

payment denoted byR. The debt amountK and coupon paymentR are pre-negotiated from a

‘revolving line of credit’ type of loan commitment, which equity- and debtholders have agreed

upon att = 0, before the investment decision is taken.6 Debtholders are assumed to be rational

and set the equityholders’ coupon paymentR not only based on the level of debt providedK, but

also on their expectation of the equityholders’ behaviour regarding project default. In the case of

default the equity value is assumed to be zero and the bankruptcy costs amount tob percent of the

value of the unlevered project at time of default, with debtholders receiving the remainder.

2.1. Uncertainty dynamics

We model the price process (Xt)t≥0 as a general non-negative, time-homogeneous, and regular

diffusion living on the filtered probability space (Ω,P, {Ft}t≥0,F ) and described by the SDE

dXt = α(Xt)dt+ σ(Xt)dWP
t , X0 = x, (1)

whereα andσ are assumed to be continuous anddWP
t denotes the increment of the Wiener process

under thereal-world measure P. Furthermore, we assume thatσ(x) > 0 for x ∈ (0,∞) and that the

upper boundary at infinity is a natural one (and hence is unattainable in finite time). In addition,

from a practical perspective we are only interested in processes for which zero is unattainable after

the process has started. This restricts our attention to processes for which zero is eithernatural

5Note that the presence of tax in the model is crucial since theexistence of a tax shield is important to induce
equityholders to employ debt financing.

6This type of commitment allows the equityholders to borrow,on pre-negotiated terms, at any time during the life
of the commitment. For more details see Kashyap, Rajan, and Stein (2002).
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or anentrance (not exit)boundary. These boundary classifications are an important distinction

to make since the often applied GBM process has zero as a natural boundary, whereas the mean-

reverting process employed, and further discussed, in Section 3 has zero as an entrance (not exit)

boundary. Eq. (1) encompasses many of the well known processes used in modern finance, such

as the GBM, CIR and CEV models (see Black and Scholes, 1973, Cox, Ingersoll, and Ross, 1985,

Cox, 1975, respectively).

In this paper, and consistent with the literature, we will assume the existence of a suitable

spanning asset (resulting in a complete market) and hence weapply contingent claims analysis to

price the various real options introduced.7 Such an analysis requires that expectations be taken

under the equivalentrisk-neutralmeasure Q and so we find that the dynamics under this measure

are given by8

dXt =
(

α(Xt) − λσ(Xt)
)

dt+ σ(Xt)dWQ
t , X0 = x, (2)

where we have effectively subtracted a risk-premium (λσ) from the drift of the real-world price

dynamics. Hereλ represents the (justified) Sharpe ratio of the commodityX.

2.2. Unlevered project value

To start, we consider the (inner) option determining the unlevered project valueVu(x) after

investment. The project derives value from the expectationof future cashflows (in present value

terms), subject to optimal abandonment. The project value is therefore

Vu(x) := sup
Ta

E
Q
x

∫ Ta

0
e−rtπu(Xt)dt, (3)

whereTa is the abandonment time for the manager andπu represents the after-tax profit flow of

the unlevered project given by

πu(x) = (1− τ)(x−C). (4)

7In Section 4 we use an oil producing firm as our illustrative example and hence, since oil is traded, the market is
complete and the use of contingent claims analysis can be easily justified.

8See Appendix A for a detailed derivation of the risk-neutraldynamics given in Eq. (2).
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Without loss of generality we assume, for simplicity, that only one unit ofX is produced (at a cost

C). To obtain the solution to the optimal stopping problem defined in Eq. (3) the Markovian nature

of the process allows us to reformulate the problem to obtain(see Appendix B)

Vu(x) = fu(x) + sup
Ta

E
Q
x

[

e−rTa
(

− fu(XTa)
)]

, (5)

where

fu(x) := E
Q
x

∫ ∞

0
e−rtπu(Xt)dt = (1− τ)

(∫ ∞

0
e−rt

E
Q
x [Xt]dt−

C
r

)

, (6)

representing the present value of the total expected profitsof the unlevered project if the project

wasneverabandoned. The second term in Eq. (5) can therefore be interpreted economically as the

value of the option to abandon the project. Furthermore, theproject manager would only abandon

at prices for which the expected future profits are negative,i.e. fu(Xt) < 0.

Given the infinite-horizon of the optimal stopping problem in Eq. (5) it would seem intuitive

that the optimal stopping rule be independent of time and hence take the form of a threshold

strategy, i.e.T∗a = inf {t ≥ 0 |Xt = x∗a}, the first hitting time of the commodity priceX of the

level x∗a. However, the optimality of such a threshold strategy should not be assumeda priori.9

However, necessary and sufficient conditions on the payoff function fu and the processX for the

optimality of threshold strategies are provided by Villeneuve (2007). Furthermore, it can be shown

that for all cases considered in Section 3,fu takes on a simple linear form and hence easily satisfy

the (fairly weak) conditions required.

Once the optimality of a threshold strategy is shown, to proceed with the solution two methods

are commonly used. One can formulate the associated free-boundary problem and solve it using

the general methods of second-order ordinary differential equations (ODEs) and the principle of

smooth fit;10 this was the methodology employed by Mauer and Sarkar (2005). Here, we choose

an alternative probabilistic method, based on diffusion theory (see Rogers and Williams, 2000),

which we believe to be more direct and illuminating when applied to the wider class of uncertainty

9Such a priori assumptions of optimality are abundant in the literature as was noted by Villeneuve (2007) who
provides illuminating cautionary examples.

10See Chapter 10, Section 4 of Oksendal (2003).
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assumptions under consideration in the present paper.

Being justified to use simple threshold strategies, it is clear that our optimisation over stopping

times in Eq. (5) now becomes an optimisation over threshold levelsxa, in other words

Vu(x) = fu(x) − inf
Ta

E
Q
x

[

e−rTa fu(XTa)
]

= fu(x) −min
xa

{

fu(xa)E
Q
x

[

e−rTa
]}

, (7)

where we have used the continuity of the processX in the last equality above. To proceed, an

expression for the expected discount factor,E
Q
x [e−rTa], is needed. This object can be identified as

simply the Laplace transform of the hitting timeTa for which, in the class of time-homogeneous

diffusions under consideration, we have a very general expression, namely

E
Q
x

[

e−rTa
]

=






φ(x)/φ(xa) for x ≥ xa,

ψ(x)/ψ(xa) for x < xa,
(8)

whereφ(x) andψ(x) are the unique (up to a linear scaling), positive, decreasing and increasing

solutions, respectively, of the linear second-order ODE11

1
2
σ2(x)u′′(x) + (α(x) − λσ(x)) u′(x) − ru(x) = 0. (9)

From Eqs. (7) and (8) we see that the unlevered firm value thus becomes

Vu(x) =






fu(x) − fu(x∗a)
φ(x)
φ(x∗a) , for x ≥ x∗a,

0, for x < x∗a,
(10)

where the optimal abandonment trigger pricex∗a solves the following equation

φ′(x∗a)

φ(x∗a)
=

f ′u(x∗a)

fu(x∗a)
, (11)

which is obtained from the first-order condition of the minimisation in Eq. (7).12 Note that de-

11These functions are often called thefundamentalsolutions to such ODEs. For more details see Chapter II, Part
11 of Borodin and Salminen (2002).

12The second-order condition can be verified, obtaining a minimum providedf ′′u (x∗a)φ(x∗a) − fu(x∗a)φ′′(x∗a) > 0.
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pending on the specification of the uncertainty processX, Eq. (11) may or may not allow us to

solve for x∗a explicitly. Only in the very simplest cases will such explicit solutions be available,

however in all casesx∗a can be found numerically very easily using any standard root-finding algo-

rithm.13 In the latter case, knowledge of the existence and uniqueness of the solution to Eq. (11)

is of practical interest as will be discussed in the context of Proposition 1.

2.3. Levered project value

Next, consider the availability of debt funding, where interest payments are assumed to be

tax deductible. Due to the resulting tax-shield of debt-financing, equityholders have the incentive

to take on debt to increase the total equity value of the investment. In the presence of coupon

paymentsR≥ 0, the profit function of the levered project changes Eq. (4) to

πℓ(x) = (1− τ)(x−C − R). (12)

The levered project valueVℓ(x) after investment is simply the sum of the values of equity and debt

Vℓ(x) := E(x) + D(x). (13)

Analogous to the value of the unlevered firm, the equity valueof the levered project,E(x), is

E(x) := sup
Td

E
Q
x

∫ Td

0
e−rtπℓ(Xt)dt, (14)

whereTd = inf {t ≥ 0 |Xt = xd}, the first hitting time of the default triggerxd, the price at which the

equityholders chose to default. Similar to the unlevered case, the optimal stopping problem (14)

can be reformulated as14

E(x) = fℓ(x) + sup
Td

E
Q
x

[

e−rTd
(

− fℓ(XTd)
)]

(15)

13Such algorithms are built in to most software packages such asMATLABor Mathematica.
14Details are identical to those in Appendix B and therefore omitted.
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where

fℓ(x) = E
Q
x

∫ ∞

0
e−rtπℓ(Xt)dt = (1− τ)

(∫ ∞

0
e−rt

E
Q
x [Xt]dt−

C + R
r

)

(16)

represents the present value of the total expected profits ofthe levered project if the project was

never abandoned by the equityholders. Note that by inspection of Eqs. (6) and (16) it follows that

fℓ(x) = fu(x) −
R(1− τ)

r
, (17)

meaning that the total expected profit function of the levered project equals that of the unlevered

project less the expected present value of the after-tax coupon payment stream. In addition, in-

spection of Eq. (16) and the continuity ofX indicate thatfℓ(x) (and hencefu(x)) is increasing in

x.

Using the same solution techniques as before yields the following equity value

E(x) =






fℓ(x) − fℓ(x∗d)
φ(x)
φ(x∗d) , for x ≥ x∗d,

0, for x < x∗d,
(18)

wherex∗d solves the equation
φ′(x∗d)

φ(x∗d)
=

f ′
ℓ
(x∗d)

fℓ(x∗d)
. (19)

As previously mentioned, an important question arising from the above analysis is under what

conditions do Eqs. (11) and (19) have a solution and when is such a solution unique? The answer

is provided by the following proposition.

Proposition 1. Under the standing assumptions on the process X, there exists a solution to Eqs.

(11) and (19) provided that fu(z) and fℓ(z), respectively, are negative for a non-empty interval of

R+. Furthermore, if the functionθ(z) := rz+ λσ(z) − α(z) is non-decreasing, fi(z) (for i = u, ℓ) is

convex, and zero is a non-attracting boundary, then this solution is unique.

Proof. See Appendix C.

Corollary 2. Whenever solutions to Eqs.(11)and (19)exist, x∗d ≥ x∗a for any process X.

Proof. See Appendix D.
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The above corollary generalises the GBM based resultx∗d ≥ x∗a, found by Mauer and Sarkar

(2005), to a wider class of diffusion processes. This result is consistent with economic intuition

since given the extra cash-flow burden of the amountR, one expects rational equityholders to

abandon the project sooner (at a higher output price) given the lower overall cash inflows.

Next, to value the debt we observe that the debtholders’ periodic cash flow is equal to the

coupon paymentR, provided that the equityholders do not default. In the caseof default, debthold-

ers receive the value of the unlevered project less bankruptcy costs. Therefore, the debt value is

given by

D(x) := E
Q
x

[∫ T∗d

0
e−rtRdt+ e−rT ∗d(1− b)Vu(XT∗d

)

]

(20)

whereT∗d denotes the equityholders’optimal default time. Note that this is no longer an opti-

misation problem since the debtholders do not have any direct influence on the time of default.

Accordingly, the debt value can be shown to be (see Appendix E)

D(x) =






R
r +

(

(1− b)Vu(x∗d) − R
r

)
φ(x)
φ(x∗d) , for x ≥ x∗d,

(1− b)Vu(x), for x < x∗d.
(21)

Note that the assumption of a natural boundary at infinity forthe processX guarantees that

limx→∞ φ(x) = 0 and hence Eq. (21) shows that for very large values of the output price, the

value of debt approaches the value of a perpetuity,R/r, indicating that the probability of default

also approaches zero.

Substituting Eqs. (18) and (21) into Eq. (13) and judicious rearranging provides the following,

particularly insightful, representation of the value of the levered project (forx ≥ x∗d)15

Vℓ(x) = Vu(x) +
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

. (22)

Therefore, we find that the value of the levered project can beexpressed as the sum of three

components. The value of the unlevered project, the expected additional benefit provided by debt

in the form of a tax shield, and the expected cost of bankruptcy. This representation forms the

15See Appendix F for the derivation of Eq. (22). Note that forx < x∗d, we haveVℓ(x) = D(x) = (1− b)Vu(x).
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basis for the trade-off theory of optimal capital structure (Kraus and Litzenberger, 1973).

2.4. Second-best investment policy

Next, the option to invest in the project, which we call thefirm value, is considered.16 We begin

with the case of thesecond-bestinvestment policy based on the equityholders’ desire to maximise

equity/shareholder value (as opposed tofirst-bestor total firm value). This policy provides the

optimal time to undertake the investment from the equityholders’ point of view. The second-best

value of the investment option (firm), denoted asF2, is defined as

F2(x) := sup
T2

E
Q
x

[

e−rT2
(

E(XT2) − (I − K)
)]

(23)

since the equityholders will only outlayI − K for the investment and they wish to maximise

the total value of equity at the time of investment. It can be verified that the equity value also

satisfies the necessary conditions for the optimality of a threshold strategy in Eq. (23) and hence

T∗2 = inf {t ≥ 0 |Xt = x∗2} wherex∗2 denotes the second-best trigger price at which investment

becomes optimal. The second-best value can thus be calculated as

F2(x) = max
x2

{(

E(x2) − (I − K)
)

E
Q
x

[

e−rT2
]}

= max
x2

{

(

E(x2) − (I − K)
) ψ(x)
ψ(x2)

}

yielding

F2(x) =






(

E(x∗2) − (I − K)
) ψ(x)
ψ(x∗2) , for x < x∗2,

E(x) − (I − K), for x ≥ x∗2,
(24)

wherex∗2 solves the equation
E′(x∗2)

E(x∗2) − (I − K)
=
ψ′(x∗2)

ψ(x∗2)
. (25)

Note that Eqs. (24) and (25) provide the second-best firm value and trigger priceconditionalon

the equityholders and debtholders agreeing on the periodiccoupon paymentR in exchange for an

initial loan of amountK. However, recall that debtholders rationally anticipate that equityholders

16Note that, like Mauer and Sarkar (2005), we assume the firm undertaking this investment decision has no other
existing operations or debt. Hence the investment option value is equivalent to thepurefirm value, since there are no
additional operations from which to derive value.
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will maximise equity value and will therefore charge appropriately high interest payments. In other

words, the debtholders have no control over the equityholders’ default and investment decisions

but they can determine, given the coupon paymentR, how much debt will be provided upon

investment. Consequently, thefair value of debt, denoted asK∗ and representing the amount of

debt provided at the time of investment, is equal to Eq. (21) evaluated at the second-best trigger

pricex∗2, i.e. K∗ = D(x∗2) which yields17

K∗ =
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

) ψ(x∗2)

ψ(x∗d)
. (26)

Eq. (26) governs the equilibrium relationship between the coupon paymentR and the amount of

debt provided.18 Given this relationship we can now determine the second-best firm value and

trigger pricein equilibrium. Substituting Eqs. (26) and (13) into Eqs. (24) and (25) we see that

F2(x) =






(

Vℓ(x∗2) − I
)
ψ(x)
ψ(x∗2) , for x < x∗2,

Vℓ(x) − I , for x ≥ x∗2,
(27)

and furthermore
E′(x∗2)

Vℓ(x∗2) − I
=
ψ′(x∗2)

ψ(x∗2)
. (28)

Note that Eq. (27) represents the expected discounted valueof theleveredproject less total invest-

ment cost.

2.5. First-best investment policy

The comparison of the general results derived from Eqs. (27)and (28) to the first-best firm

value and investment trigger price allows for a quantitative analysis of agency costs in the presence

of conflicting equityholder-debtholder interests. We derive the first-best firm value and investment

policy based on the setting in which the overall firm value, asopposed to equity value, is max-

imised. In this case, and analogous to the second-best value, the first-best firm value is defined

17The rational debtholders could provide less debt for a givencoupon paymentR, however we assume that compe-
tition amongst debt providers will enforce the stated equality.

18Alternatively, and perhaps more intuitively, one could solve (implicitly) for R and determine the fair coupon
payment debtholders would expect for a given amount of debtK promised to equityholders at time of investment.
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as

F1(x) := sup
T1

E
Q
x

[

e−rT1
(

Vℓ(XT1) − I
)]

= max
x1

{

(Vℓ(x1) − I )
ψ(x)
ψ(x1)

}

, (29)

hence

F1(x) =






(

Vℓ(x∗1) − I
)
ψ(x)
ψ(x∗1) , for x < x∗1,

Vℓ(x) − I , for x ≥ x∗1,
(30)

wherex∗1 denotes the first-best trigger price and satisfies the equation19

V′
ℓ
(x∗1)

Vℓ(x∗1) − I
=
ψ′(x∗1)

ψ(x∗1)
. (31)

Our chosen solution methodology allows us to highlight the following important results when

comparing the first- and second-best firm values, i.e. Eqs. (30) and (27) respectively.

Proposition 3. For coupon payment R fixed, the second-best firm value F2(x) is always lower than

(or equal to) the first-best value F1(x), i.e. F2(x) ≤ F1(x), for all x, hence agency conflicts always

reduce total firm value.

Proof. We note that the representation of the two firm values given byEqs. (27) and (30) dif-

fer only by the critical levelx∗i employed in each. Since the value ofF1(x) was determined by

maximisation over such investment triggersxi, it follows that this must imply the relationship

F1(x) ≥ F2(x) for all x.

Corollary 4. For coupon payment R fixed, the second-best investment trigger price always lies

below the first-best investment trigger price, i.e. x∗
2 ≤ x∗1, resulting in earlier (or over) investment

by levered firms.

Proof. SinceF2(x) ≤ F1(x) for all x and bothF1 andF2 dominateVℓ − I the result is evident. See

Appendix G for a more detailed proof.

The above results confirm the overinvestment of equityholders in (at least partially) debt-

financed investments for a much wider class of uncertainty processes. However, it is important

19Proof of the existence and uniqueness of the first- and second-best trigger pricesx∗1 andx∗2 would appear more
difficult than forx∗a andx∗d (since it requires proof of the convexity ofVℓ). However, numerical studies of the cases
considered in Section 3 indicate that for a wide range of reasonable parameter values this is indeed the case.
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to note that the above results hold true for a couponR fixed across first- and second-best out-

comes. However, equityholders are free to choose the financing strategy and hence the coupon

paymentR which maximises equity value. From the problem formulationit seems clear that an

optimal coupon payment exists due to the tradeoff between the expected benefits of the tax shields

and the expected costs of financial distress; see Fig. 6 and Eq. (22). We defined the optimal coupon

payment which maximises both the first- and second-best firm value asR∗i = argmaxRFi(x; R). The

resulting effect of this additional flexibility of the equityholders on the value of the firm and hence

the agency costs of overinvestment is presented in the following proposition.

Proposition 5. The first-best firm value (using the first-best optimal couponR∗1) dominates the

second-best firm value (using the second-best optimal coupon R∗2), i.e. F1(x; R∗1) ≥ F2(x; R∗2).

Furthermore, this differential in firm value is greater than or equal to the differential in firm value

for a fixed coupon applied to both first- and second-best outcomes, i.e. F1(x; R∗1) ≥ F1(x; R∗2) ≥

F2(x; R∗2).

Proof. The proof is trivial sinceF1(x; R∗1) ≥ F1(x; R∗2) ≥ F2(x; R∗2) where the first inequality must

be true from the definition ofR∗1 and the second inequality is due to the result of Proposition3.

To summarise, for a fixed coupon paymentR, the overinvestment of equityholders (i.e. their

optimal timing decisions) results in a decrease in firm value. However, with the inclusion of

the effect of agency conflicts on the optimal financing policy (i.e. the choice of couponR) the

equityholders’ optimal leverage decision results in an even further reduction in firm value.

At this stage it would be desirable to provide a result comparing the relative sizes of the first-

and second-best investment trigger prices when the equityholders are also allowed to optimise over

the couponR. Unfortunately, such a result appears to be elusive in the present (very general) set-

ting. Numerical computations in Section 4, however, revealthatx∗1(R
∗
1) ≥ x∗2(R

∗
2) for all parameter

regimes considered, indicating that overinvestment is indeed maintained by equityholders when

they are also allowed to optimally choose the level of debt financing.
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2.6. Agency costs

To quantify the agency cost of overinvestment by equityholders we follow Mauer and Sarkar

(2005) and define the agency cost as the difference between first- and second-best firm values

(evaluated at their respective optimal coupon payments) inpercent of the second-best firm value

AC :=
F1(x; R∗1) − F2(x; R∗2)

F2(x; R∗2)
. (32)

Note that given our expressions for the firm valuesFi(x) in Eqs. (27) and (30), it can be seen that

the agency costAC is independent of the pricex, provided thatx < x∗2(R
∗
2). If x∗2(R

∗
2) < x < x∗1(R

∗
1)

then the agency cost becomes dependent onx and further ifx > x∗1(R
∗
1) then there are no agency

costs since it is optimal to immediately invest under both first- and second-best outcomes. This

point was not previously noted by Mauer and Sarkar (2005) andcan be important when assessing

the agency cost of projects for which immediate investment is optimal under either the first- or

second-best case.

Mauer and Sarkar (2005) also chose to decompose agency cost into two components. The first

being the loss of pure operating value due to agency conflictsand the second the loss in the net

benefit of debt financing. Given the above considerations we instead choose to decompose the

agency cost differently. In order to pinpoint the agency costs due to differences intimingdecisions

(x∗1 vs. x∗2) and those due to differences infinancingdecisions (R∗1 vs. R∗2) we define

AC =

[
F1(x; R∗1) − F1(x; R∗2)

F2(x; R∗2)

]

+

[
F1(x; R∗2) − F2(x; R∗2)

F2(x; R∗2)

]

=: ACf in + ACtim. (33)

This novel decomposition provides additional insights andhighlights important results when com-

paring GBM and mean reversion in Section 3, the results of which are reported and analysed in

detail in Section 4.

Finally, we note that the differing optimal coupon payments also affect the optimal leverage at

investment, defined asL∗i = D(x∗i ; R∗i )/Vℓ(x∗i ; R∗i ) for i = 1, 2. These leverage ratios will allow us

to evaluate the impact of agency conflicts (and also mean reversion) on optimal capital structure

decisions.
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3. Mean-reverting commodity prices

In this section we apply the general model from Section 2 to a well known mean-reverting

process. Applying the GBM process (withα(x) = αx andσ(x) = σx) to our general setup will

result in a model similar to the one studied by Mauer and Sarkar (2005). Results for both GBM

and MR will be provided in Section 4.

To incorporate mean reversion into the price dynamics we consider the following arithmetic

mean-reverting (AMR) process

dXt = η(x− Xt)dt+ σXtdWP
t , (34)

also known asinhomogeneous geometric Brownian motion(IGBM)20 due to the inhomogeneity of

its expected return in the state variableX. Under the equivalent risk-neutral measure Q the price

process becomes

dXt = (η(x− Xt) − λσXt) dt+ σXtdWQ
t . (35)

Hereη denotes the speed of mean reversion and determines the rate at which Xt returns tox, the

expected long-run price level. In comparison to Mauer and Sarkar (2005) the process in Eq. (34) is

a stationary process as opposed to the non-stationary GBM process employed by those and many

other authors. All other process elements are identical to the ones described in the context of Eq.

(2).

In the real option literature, the use of the process (34) dates back to Bhattacharya (1978)

and has been applied more recently by Insley (2002), Abadie and Chamorro (2008), Hong and

Sarkar (2008) and Tsekrekos (2010) amongst others. It has also been used in other areas such

as stochastic volatility (see Lewis, 2000) and interest rate modelling (see Brennan and Schwartz,

1980). The reasons for choosing this particular process aremanyfold. First, like GBM, the IGBM

mean-reverting model guarantees positive process values,consistent with our oil price application.

20In the existing literature, this process has been called, amongst other things, ‘inhomogeneous geometric Brownian
motion’ (IGBM) (see Abadie and Chamorro, 2008, Zhao, 2009),‘Geometric Ornstein-Uhlenbeck’ (GOU) (see Insley,
2002) or ‘geometric Brownian motion with affine drift’ (see Linetsky, 2004). To be consistent with the more recent
literature we refer to this process as IGBM.
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Second, Zhao (2009) showed that IGBM has many nice closed form properties despite not being

of the more tractable affine class. Third, due to the explicit inclusion of the risk-discounting effect

in this paper, it is advantageous to have a process for which the volatility of returns is a constant

instead of exhibiting the so-calledleverage effect.21 Finally, and perhaps most importantly, it can

be seen that geometric Brownian motion (GBM) can be obtainedas a special case of IGBM by

settingη = 0 or x = 0 andη = −α, this allows for a direct comparison of both the IGBM and GBM

processes. Given these considerations the application of IGBM in modelling positive commodity

prices appear to be a natural fit.

Remark1. We note that the IGBM process exhibits an entrance (not exit)boundary at zero in

contrast to the natural barrier for the GBM process employedby Mauer and Sarkar (2005).22 This

indicates that the origin is inaccessible after the processhas started and the only feasible case of

a zero price level is given when the current price is zero, i.e. X0 = 0. These considerations can

have an important effect on the option value. In the case of the investment option discussed in

Section 3.3, the entrance boundary guarantees a positive firm value atx = 0 for positive long-run

mean-reverting levels (x > 0). The intuition behind this is that, even if prices are currently zero,

we can still expect future prices to revert back to a positivelong-run mean levelx. Hence atx = 0

the investment option still holds time value and so is positive.

It might appear that these are merely technical considerations, however a proper understanding

of the boundary behaviour of the chosen uncertainty processis crucial in the correct application

of the appropriate boundary conditions. For example, Tsekrekos (2010), who also employs the

IGBM process, attempted to apply an incorrect boundary condition at zero (Eq. (7) in Tsekrekos,

2010). The stated condition is applicable for GBM (and its natural boundary) but not for IGBM. In

fact, the only solution to Eq. (6) in Tsekrekos (2010) satisfying the incorrect boundary condition

is indeed the trivial solutionV0 ≡ 0. However, a careful scrutinizing of Tsekrekos (2010) reveals

21This is not to say that the leverage effect is unimportant, just that we choose to isolate the effects of risk-
discounting from the leverage effect. The influence of the leverage effect on investment and financing decisions
could be investigated easily using the CEV model but this is left for the subject of future research. For a step in this
direction see Nunes (2009).

22This can be seen most clearly by the application of the well knownFeller testsfor boundary classifications. Zhao
(2009) applied such tests and showed that, for the process (35), zero in an entrance boundary and infinity a natural
boundary.
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that an incorrect application of the incorrect boundary condition results, fortuitously, in the correct

expression for the solution to the associated free-boundary problem.

3.1. Unlevered project value

The process in Eq. (35) can be rearranged to

dXt = (η + λσ)

(

x
1+ λσ/η

− Xt

)

dt+ σXtdWQ
t , (36)

which is identified as an AMR process with a speed of mean reversion ofη + λσ and a long-run

mean level ofx/(1+ λσ/η). Hence it is well known that the expected value at timet is given by

E
Q
x [Xt] =

x
1+ λσ/η

+

(

x−
x

1+ λσ/η

)

e−(η+λσ)t. (37)

Therefore, by Eq. (6), the value of all future discounted expected profits is given by

fu(x) = (1− τ)

(

x
r + η + λσ

+
ηx

r(r + η + λσ)
−

C
r

)

. (38)

Given Eq. (38) the abandonment trigger pricex∗a in Eq. (11) can be determined and the value of

the unlevered projectVu(x) in Eq. (10) calculated. To do so, the functionsφ(x) andψ(x) associated

with the IGBM process have to be determined.

Proposition 6. The fundamental decreasing and increasing functionsφ andψ associated with the

process(35)are given by

φ(x) = xγM

(

−γ, 2(1− γ) +
2(η + λσ)

σ2
;
a
x

)

, (39)

ψ(x) = xγU

(

−γ, 2(1− γ) +
2(η + λσ)

σ2
;
a
x

)

, (40)

where M and U are confluent hypergeometric functions, a:= 2ηx/σ2, andγ is the negative root

of the quadratic1
2σ

2γ(γ − 1)− (η + λσ)γ − r = 0.

Proof. The derivation of the solution to Eq. (9) in the case of IGBM relies on its reduction to the
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standard form of the so-called Kummer’s equation23 (see Appendix H).

3.2. Levered project value

In the case of the levered project the calculation of the value of all future discounted expected

profits fℓ requires the substitution of Eq. (37) into Eq. (16) (or alternatively by substitution of Eq.

(38) into Eq. (17)) yielding

fℓ(x) = (1− τ)

(

x
r + η + λσ

+
ηx

r(r + η + λσ)
−

C + R
r

)

. (41)

This equation allows us to solve for the default trigger price x∗d in Eq. (19) and thus determine

the optimal equity value of the levered projectE(x) in Eq. (18). Next, and following Eq. (21),

the value function of debtD(x) can be specified. Lastly, the value function of the levered project

follows from applying the previous results to Eq. (13).

Inspection of Eq. (41) leads to the following important observation.

Proposition 7. Considering the uncertainty dynamics of Eq.(35), the optimal default trigger price

x∗d does not exist, and hence it is never optimal to default on thelevered project, if the following

condition is satisfied
x

C + R
> 1+

r + λσ
η

. (42)

Furthermore, if Eq.(42) is satisfied, the project value Vℓ(x) remains finite and is given by fℓ(x) +

R/r. The same results hold for the optimal abandonment triggerprice x∗a when R= 0.

Proof. Noting that fℓ is linear (and hence convex), we recall from Proposition 1 that a unique

optimal default (abandonment) trigger exists provided that fℓ ( fu) becomes negative inR+. Since

fℓ is increasing it suffices to show thatfℓ(0+) < 0 for this condition to be satisfied. Evaluating Eq.

(41) atx = 0 provides the above result.

Corollary 8. Under geometric Brownian motion with driftα, the optimal default and abandon-

ment trigger prices x∗d and x∗a, respectively, do not exist (for C+ R > 0) if α ≥ r + λσ (and hence

default is never optimal). Furthermore, in this case, the project value becomes infinite.

23See, for example, Abramowitz and Stegun (1972)
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Proof. Settingx = 0 andη = −α in Eq. (42) provides the required result.

The above results provide clear qualitative differences in investors’ behaviour between the

GBM and IGBM case. Under the assumption of a GBM price processthe conditionα < r + λσ

is required to ensure that the project valuation is finite andinvestors will always optimally default

on (abandon) the project in this case if subjected to positive costs. Otherwise, ifα ≥ r + λσ, the

project has an infinite value and trivially should never be abandoned.24 This condition effectively

restricts the region of applicability of the GBM model to valuing projects in this (infinite horizon)

case. Under the assumption of mean-reverting prices on the other hand, the project valuefℓ can

be seen to remain finitefor all parameter regimes, even when it is optimal to never default on

the project. Finally, we note that Eq. (42) indicates that ifx < C + R, hence the project is not

profitable in the long-run, then it will always be optimal to default/abandon at sufficiently low

prices, irrespective of other parameters.

3.3. First- and second-best investment policy

Following the steps of the general model, the firm value functions Fi(x) (i = 1, 2) for the

specific case of process (34) can be found by applying Eqs. (39) and (40), along with Eq. (22),

in the general representations given by Eqs. (27) and (30). In addition, the first- and second-

best trigger prices can be calculated numerically with standard root-finding algorithms applied

to the specific cases of Eqs. (28) and (31). Other required inputs to these calculations are the

abandonment and default trigger pricesx∗a andx∗d, determined by the specific cases of Eqs. (11)

and (19) respectively, as well as the integrated profit function fℓ(x) given in Eq. (41).

4. Results

In this section we derive numerical results based on the IGBMprocess described in Section

3, which, upon settingη = 0, allows for the comparison of our investment, financing andpolicy

related results with those based on a standard GBM price process. We proceed as follows. After

24This condition is reminiscent of the popular (Gordon) constant growth model for equity valuation (see Gordon,
1959) in which the equity cannot be valued if the expected future growth rate of dividends exceeds the risk-adjusted
required rate of return.
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discussing our base case parameters we first focus on the effects of mean reversion on the two-

layered optimal stopping problem to study how the default option affects investment timing and

financing decisions. We then focus on quantifying the agencycosts of debt financing (and its com-

ponents) and perform extensive comparative statics analysis for all model parameters, focusing in

particular on the speed of mean reversionη, which plays a crucial role for our model results.

4.1. Base case parameters

To illustrate the model results we consider the investment into an oil production facility (such

as an oil rig). Oil continues to be a key energy resource in the21st century and therefore has

received much attention in the the real options literature (see, for example, Paddock, Siegel, and

Smith, 1988). Furthermore, many studies indicate that oil price dynamics exhibit mean-reverting

behaviour, at least over longer time periods (see Bessembinder et al., 1995), therefore oil would

appear a natural choice as our illustrative example.

We estimated the parameters of the IGBM model using 12 years (January 2000–December

2011) of monthly West Texas Intermediate (WTI) oil price data (US Dollars per Barrel).25 We

employed the estimation method of Longstaff and Schwartz (1995), which has also been employed

in many other papers since, including Insley (2002), Sarkarand Zapatero (2003) and Hong and

Sarkar (2008). The estimation yielded the following base case uncertainty parameters:x = $98.22,

η = 0.1733 andσ = 0.274.

The other (non-process specific) parameters are taken to be:r = 0.04, λ = 0.32, τ = 0.3,

b = 0.35,C = $60,R= $13.03, I = $180 andX0 = $100.26 The production cost per barrel of $60

is set to be the average production cost for several oil production technologies (see International

Energy Agency, 2008, p.218). Note that these costs (assumedto be constant) are less than the

long-run price levelx and so, in the absence of debt, the project is expected to makea profit in

the long-run. The base case coupon paymentR is derived as the optimal second-best coupon for

25The data was obtained from theUS Energy Information Administration. We choose this period to respond to
what appears to have been a structural change in the price of oil (to a much higher price regime) around the turn of
the last century. It should also be noted that we estimated the process using real prices since it is the real price (not
the nominal) that is assumed to mean revert. As such we converted all prices to December 2011 prices using the
Producers Price Index(PPI).

26Note that all costs are in units ofper barrelsince the estimated price is in these units.
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the base case parameters (in which 65.77% of the project is financed by debt). This choice is

consistent with the procedure adopted in Mauer and Sarkar (2005) for choosing their base case.

The effective tax rateτ of 30% and bankruptcy costsb of 35% also follow Mauer and Sarkar

(2005). The investment costI is assumed to be three times the yearly costs. We proposeX0 to

be $100 which approximately reflects WTI oil prices during the first half of 2012. For the Sharpe

ratio λ we assume a value of 0.32, taken from Henriques and Sadorsky (2008) who reported this

to be the Sharpe ratio for oil prices over a similar sample period. Finally, the risk-free rater is

chosen to be 4%.

4.2. Project (inner option) and firm (outer option) values

Fig. 1 illustrates project valuesVi(x) for i = u, ℓ, and the project abandonment and default

trigger prices for the base case. The unlevered project is optimally abandoned at an oil price

of $23.25, whereas the addition of leverage increases this trigger to $48.77, thereby confirming

Corollary 2, i.e. x∗a ≤ x∗d. We note thatx∗a is very low compared to the prices observed during

the data sample period, indicating that this level would be highly unlikely to be reached if price

dynamics continued as in the sample period. On the other hand, x∗d is more than twice as large,

indicating a much higher probability of default due to the effect of debt on the project cash flows.

We also note that for the base case parametersVℓ(X0) = $181.53 andVu(X0) = $172.79, hence

debt financing adds $8.74 (or 5.06%) to the total project value, reflecting the expected value of the

tax shield in excess of bankruptcy costs.

*** Insert Figure 1 about here ***

*** Insert Figure 2 about here ***

Fig. 2 illustrates the first- and second-best firm values.27 In accordance with Proposition 3,

the first-best firm valueF1(x) is greater than the second-best firm valueF2(x) with the difference

27To better emphasise the difference between first- and second-best firm values graphically we deviate from the
base case coupon payment and usedR= $50 forthis figure only.
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reflecting the agency cost of debt financing. Also, overinvestment is observed sincex∗1 ≤ x∗2 which

confirms Corollary 4. Note that the smooth pasting ofF1(x) onto Vℓ(x) − I at x∗1 indicates the

optimality of the first-best trigger price to maximise the levered firm value. In contrast to this, the

optimality of the second-best investment trigger dictatesthat theF2(x) pastes smoothly onto the

equity valueE(x) − (I − K) (not depicted in Fig. 2), not total project value (depictedin Fig. 2),

thus explaining the kink in the firm value atF2(x∗2).

4.3. Abandonment and default trigger prices

Trigger prices of the inner and outer option are of utmost importance, governing the investor’s

optimal behaviour both before and after investment hence influencing the rational debtholders’ be-

haviour and the magnitude of agency costs. Key drivers for these trigger prices are the parameters

of the mean-reverting process employed (x, η andσ). Comparative statics for the abandonment

and default trigger levels,x∗a andx∗d, are presented in Fig. 3. In addition, comparative statics for the

non-process dependent, discount parametersr andλ and cost parametersC andR are presented.

These are crucial in our understanding of the effect of mean reversion on the entrepreneur’s opti-

mal timing, particularly in the presence of risk discounting and in light of the results of Proposition

7 and Corollary 8. As for the parametersb andτ, it can be seen from Eqs. (11) and (19) that the

abandonment and default trigger prices are independent of both.

It is important to note that these comparative statics were produced for a fixed (base case)

couponR. However, the investment timing and financing decisions areintimately linked, therefore

once we depart from the base case, the optimal equilibrium coupon payment changes, providing

additional effects on the default and investment trigger prices. We begin by analysing the isolated

effect of parameters on the optimal timing decisions by fixingR (and hence the financing deci-

sion). In Section 4.6 we will extend this analysis by considering the equilibrium coupon payment

and hence the effect of the optimal financing decisions, presenting the general mechanics of this

complex and highly nonlinear model.

*** Insert Figure 3 about here ***
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Fig. 3 demonstrates thatx∗a ≤ x∗d for all parameter values. Also, for higherx, lower costs (either

C or R) or a lower discount rate (due to a lowerr or λ) abandonment and default occurs at a lower

trigger price because the expected profitability of the project, in present value terms, increases in

these cases. Project owners therefore tolerate much lower output prices in light of this increased

expected profitability.

Also, from Fig. 3(b) we observe that a higher speed of mean reversion results in a lower

abandonment or default trigger price. For low values ofη there is very little effect on the default

and abandonment trigger prices, whereas there is a more pronounced effect for higher levels of

η. As noted previously, for the base case parameters the long-run profitability of the production

facility is positive (i.e.x−C−R> 0) and so higher levels ofη indicate that price departures fromx

(and hence from a profitable region) are corrected more quickly through a stronger mean-reversion

force. This reduces the price variance and the equityholders’ are willing to tolerate lower output

prices.

However, note that theη dependence of the trigger prices is intimately linked with the values

of the long-run price levelx and costsC+R. Specifically, it can be shown that when the project is

not expected to be profitable in the long-run (i.e.x < C+R) we find that an increase in the speed of

mean reversion actually increases the abandonment and default trigger prices, and hence increases

the probability of such default (which in turn would impact debt provision and the equilibrium

outcome).28 This result emphasises the importance of the long-run profitability on the models

outcomes which will be discussed in more detail in Section 4.6.

In reference to Fig. 3(c), it is well understood that (in the absence of risk discounting) an

increase in volatilityσ would result in an increase in the value of the default and abandonment

options, with an associated decrease in the default and abandonment trigger prices. However, the

inclusion of the risk-discounting effect results in the impact of volatility on the required rate of

return having an additional and competing effect on the default and abandonment trigger prices.

An increase inσ results in a higher risk-adjusted discount rate and hence a lower option/project

value and a higher trigger price. These two competing forcesexplain the observedσ comparative

28It can be shown that because
∂x∗d
∂η
= −

(1−τ)(x−C−R)φ′(x∗d)
r(r+η+λσ)φ′′(x∗d) fℓ(x∗d) , x∗d is decreasing forx > C+Rand increasing forx < C+R.
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statics indicating that the risk-discounting effect dominates for low volatilities. We thus state our

first result.

Result 1. Under mean-reverting dynamics the inclusion of the risk-discounting effect results in

non-monotonic behaviour of the abandonment and default trigger prices with changes in the

volatility parameterσ.

Fig. 3 also shows that for certain parameter regimes it is optimal to never abandon or default

(x∗a = 0 andx∗d = 0 respectively), see Proposition 7. No-default regions occur for very profitable

projects, when eitherx is very high or variable costsC are very low. No default or abandonment

also becomes optimal for sufficiently low volatility σ or Sharpe ratioλ, and for sufficiently high

speeds of mean reversionη since these scenarios describe an increased certainty in price, and

hence profitability.

Critical parameter values which separate the default versus no-default regions can be deter-

mined by rearranging Eq. (42) for the required parameter. For example, the critical value ofη

above which the investor would never default on the project in Fig 3(b) is

η∗ :=
(r + λσ)(C + R)

x− (C + R)
= 0.37 (43)

with the associated critical value for abandonment obtained by settingR= 0 to yieldη∗ = 0.2.

4.4. Investment trigger prices

Next, we investigate the optimal first- and second-best investment trigger prices. Fig. 4 plots

the comparative statics of the investment trigger pricesx∗i , i = 1, 2, along with the abandonment

and default trigger pricesx∗a and x∗d for comparison. Again, we begin the analysis with a fixed

coupon paymentR.

*** Insert Figure 4 about here ***

The analysis of the critical investment trigger pricesx∗1 and x∗2 as a function of the process

and non-process model parameters demonstrates the overinvestment by equityholders, confirming
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Corollary 4. Fig. 4 also shows that the trigger prices decrease for higher long-run price levelsx

and a higher speed of mean reversionη. The opposite relationship holds when considering the

optimal investment trigger prices andσ, r, λ, τ, C or I .

Furthermore, Fig. 4(c) indicates that investment trigger prices increase as uncertainty increases

accompanied with an increase in overinvestment (since the gap between first- and second-best

trigger prices also appears to widen). To help explain this increase in overinvestment, we note that

the equityholders share the benefits of the higher prices (resulting from an increased volatility) but

are still limited on the downside by their ability to defaulton the project and hand the project over

to the debtholders. This asymmetric payoff thus results in increased incentives for equityholders

to overinvest as volatility increases (see Mauer and Sarkar, 2005).

When considering the first- and second-best investment trigger prices as a function of the

couponR we observe that for an initial increase inR both the first- and second-best trigger prices

are reduced. AsR increases further this initial decrease reverses and the trigger prices start to

increase.29 We then observe that for the second-best outcome, there is a critical value ofR above

which the default trigger price is actually higher than the investment trigger price. For the base-

case parameters this can be seen to be approximately $133.82. This region corresponds to the case

in which the equity value would be eroded to zero and therefore coupons above this value are not

economically meaningful.

The economic insight behind the non-monotonicity of the investment trigger prices in the

coupon paymentR differs for the first- and second-best outcomes. For the first-best optimiser

the investment cost is fixed atI asR increases and so the optimal behaviour is simply a result

of the expected tax-shield/bankruptcy-cost trade off. For the second-best optimiser however, the

investment cost (I − K) is no longer fixed as the couponR increases. For an increase inR, more

cost is added to the levered project which reduces the equityvalue of the up-and-running firm.

However, this additional cost finances an initial cash injection of K from the debtholders which

reduces the cost of purchasing the project for the equityholders. For small coupon payments it

29Footnote 21 of Mauer and Sarkar (2005) states that, for theirbase case parameters,x∗2 is monotonically decreasing
in R. Our result differs from this (even for the GBM case) indicating that the monotonic behaviour is parameter
dependent and not a general result of the model.
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can be seen that the reduction in investment cost faced by theequityholders is greater than the

reduction in the equity value, resulting in a netincreasein total equity value prior to investment,

and hence producing a lower investment trigger price. As thecoupon increases further, the ratio-

nal debtholders become more reluctant to provide additional debt while the value of equity in the

up-and-running firm continues to fall. The result being a netreductionin equity value prior to

investment and hence a higher investment trigger price.

Finally, for some parameter regimes (highx andη, as well as lowσ, λ andC) the first- and

second-best investment trigger prices converge, resulting in identical first- and second-best out-

comes. This would indicate that the agency cost is negligible in these regimes. Inspection of Eqs.

(28) and (31), reveals that trigger pricesx∗1 and x∗2 are equal ifV′
ℓ
(x) = E′(x). This is the case

whenD′(x) = 0 sinceV′
ℓ
(x) := E′(x) + D′(x). Further, it can be seen that this will be the case

for parameter regimes in which it is optimal for the equityholders to never default on the project.

Inspection of Eq. (21) reveals that in this case the fair value of debt reduces toR/r, indicating that

debtholders are not concerned with default. The debt value therefore becomes insensitive to the

output price, i.e.D′(x) = 0, yieldingV′
ℓ
(x) = E′(x) and hencex∗1 = x∗2. Note that this feature is

unique to the model under mean-reverting dynamics since it is always optimal to default under the

GBM assumption.

Result 2. When it is never optimal for equityholders to default on the levered project, the first-

and second-best investment trigger prices coincide, and the agency-costs are zero.

We also note that there are in fact two mechanisms through which agency costs can disappear

in our model. The first occurs if, for a given parameter regime, immediate investment becomes

optimal for both first- and second-best outcomes. This mechanism is independent of the process

chosen. The second mechanism occurs when we are in a parameter regime for which it is never

optimal to default on the levered project (as characterisedby Proposition 7). Therefore, mean

reversion provides additional mechanisms for the reduction of agency cost.

4.5. Equilibrium debt provision

Next we investigate the equilibrium provision of debt in thepresence of agency conflicts and

mean-reverting prices. Fig. 5 represents the equilibrium amount of debt financing for a given
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coupon paymentR.

*** Insert Figure 5 about here ***

Whilst it is not surprising that more debt is provided as the coupon paymentR increases, the

concavity of the relationship reveals the impact of the increased credit risk to the debt providers

as R, and therefore the amount of debt, increases. Higher couponpayments put the firm in a

worse financial position, burdened with higher financing cost (R), which increases the probabil-

ity of equityholders’ default. It is important to note that in equilibrium the debtholders are very

reluctant to provide debt in excess of the investment amountI (i.e. K∗ > I ). This result differs

from the results of Mauer and Sarkar (2005), since for their base case a particularly high value of

debt financing in equilibrium is observed, equal to an amountexceeding 2.75 times the investment

cost.30 Our model generates perhaps more realistic equilibrium debt levels for economically rea-

sonable annual coupon payments, where the first- and second-best optimal coupons,R∗1 = $15.82

andR∗2 = $13.03 correspond to an equilibrium debt financing of 74.13% and 65.77% of the project

cost, respectively. Only extremely high coupon payments (which are suboptimal for the equity-

holders) result in debt provision of more thanI . One comparison to make with Mauer and Sarkar

(2005) is to consider our model withη = 0 to evaluate the equilibrium debt financing fraction for

(zero drift) GBM. In this caseR∗1 = $44.01 andR∗2 = 25.09 corresponding toK∗(R∗1)/I = 128.36%

andK∗(R∗2)/I = 78.51%. Thus, clearly more debt is provided in equilibrium under GBM but at the

cost of much higher coupon payments. Furthermore, these values indicate that the even higher debt

financing fraction in Mauer and Sarkar (2005)—275%, a numbernot reported by the authors—is

perhaps related to the positive drift of the GBM process employed.

Result 3. Under mean-reverting dynamics, debtholders are very reluctant to provide more funding

than the purchase price of the project.

30Mauer and Sarkar (2005) suggest that excess debt is paid as a dividend to equityholders at time of investment as
mentioned by the authors in Footnote 8. Hence, in their base case debtholders agree to provide equityholders with a
relatively large dividend; a practice not typically observed in actual investments.
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*** Insert Figure 6 about here ***

Fig. 6 shows the equilibrium first- and second-best firm values as a function of the coupon

paymentR. We observe well-defined unique maximum first- and second-best firm values (cf.

Modigliani and Miller, 1959, Baxter, 1967). Furthermore, the optimal first-best coupon,R∗1, is

higher than the second-best outcome,R∗2. Therefore, equityholders maximising equity value would

not only investsoonerbut would also pick alower coupon than a manager maximising total firm

value, resulting in increased agency costs. This behaviourwould also result in a lower second-best

leverage ratio at time of investment due to the lower coupon payment. Economically, the incentive

for the first-best optimiser to take on more debt is a result ofthe substantial benefits of the tax

shield in increasing total firm value.

4.6. Equilibrium comparative statics and the agency cost ofdebt

Drawing on our previous results, we now provide an investigation of the influence of mean

reversion on thetrue equilibrium outcomes, i.e. when the additional flexibilityof equityholders

to select the optimal coupon paymentR∗ is taken into account as model parameters are varied.

Focusing in particular on the speed of mean reversion parameter—sinceη = 0 corresponds to

GBM dynamics—we investigate its effect on the level of the optimal coupon itself, the investment

and abandonment trigger prices, optimal leverage and the agency costs of debt.

*** Insert Table 1 about here ***

Table 1 reports the comparative statics analysis of the optimal coupons, optimal trigger prices

(both default and investment), firm value, optimal leverage(at investment), credit spreads,31 and

total agency cost as the model parameters are varied. First,we reiterate thatx∗1(R
∗
1) > x∗2(R

∗
2) for all

parameter regimes, demonstrating overinvestment for the case when the coupon payment is also

independently optimised.

31Defined asCSi = R∗i /D(x∗i (R
∗
i ); R∗i ) − r for i = 1, 2 as in Mauer and Sarkar (2005).
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Focusing on the agency costs we observe that our comparativestatics results for the financing

parameters (b andτ) and the discount parameters (r andλ) are consistent with Mauer and Sarkar

(2005). However, under mean-reverting dynamics, we previously observed that a key driver for the

qualitative behaviour of the model’s output was the long-run profitability of the projectx−C −R,

which increases when eitherx increases or costsC decrease. Accordingly, inspection of Table 1

provides the following important result.

Result 4. As the long-run profitability of the project increases, agency costs are reduced.

Fig. 7 shows the true comparative statics (allowing for the change in optimal coupon) of

several equilibrium outputs asη is varied. Figs. 7(a) and 7(b) show the optimal outcomes for the

equityholders financing and timing decisions. Fig. 7(c) shows the credit spreads, a proxy for the

willingness of the debtholders to provide debt in equilibrium, and Fig. 7(d) depicts the optimal

leverage ratio of the firm upon investment.

*** Insert Figure 7 about here ***

Note that for the base case parameters we havex−C = $38.22, hence the project is profitable

in the long-run in the absence of any debt. Consequently, thefirm can take on a coupon payment

of up to $38.22 and still remain profitable in the long-run. Inspection of Fig. 7(a) indicates that

the optimal coupon payment for the second-best outcome is indeed always below this maximum

value.32

Inspection of Fig. 7 also indicated the existence of two distinct regimes of behaviour as the pa-

rameterη is varied. The first regime, forη < ηc, exhibits relatively high optimal coupon payments

which are decreasing asη increases, whereas both the investment and default triggerprices and the

optimal leverage ratios remain relatively insensitive to changes inη. Credit spreads are also high

in this regime. In the second regime, forη > ηc, the optimal coupon payment is increasing inη

32The first-best outcome does optimally make the the project loss-making in the long run for very low speeds of
mean reversion. However, note that the mean-reverting level x effectively disappears asη→ 0.
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(with an associated increase in optimal leverage), the optimal investment trigger price is decreas-

ing in η, and the optimal default trigger price is at a much lower level but is still fairly insensitive

to changes inη. Credit spreads are very low in this regime. Note that for thebase case parameters

ηc ≃ 0.184.

Result 5. There are two distinct regimes of equilibrium behaviour (both financing and investing)

as the speed of mean reversionη varies, separated by a critical valueηc.

The non-monotonicity of the model outcomes with respect toη is a feature of the strategic

interaction between equity- and debtholders, resulting inhighly nonlinear behaviour. An eco-

nomic interpretation of the equilibrium outcomes exhibited in Fig. 7 is as follows. Asη initially

increases above zero the expected profitsfℓ of the levered project increase due to the reduction

in variance around the long-run (positive) profit level. This increase in profitability results in an

initial decrease in the (still relatively high) equilibrium coupon payment as the debtholders reduce

their credit spreads due to a lower perceived credit risk. Wenote that at high levels of the optimal

coupon, the sensitivity of the default and investment trigger prices toη is very low,33 resulting

in negligible feedback effects on optimal financing (coupon) from the optimal timing decisions.

Hence, the financing decisions are driven mainly by the change in the expected profit functionfℓ

(asη varies). However asη increases further, the associated decrease in optimal coupon payment

results in an increased sensitivity of the trigger prices tochanges inη (sinceη∗ decreases). The

highly sensitive investment trigger prices link the optimal timing decisions and the optimal coupon

choice, therefore putting additional downward pressure onR∗. We interpret this behaviour as eq-

uityholders attempting to retain the majority of the firm’s (now very certain) operating profits by

optimally choosing to take on minimal debt.

Note that the optimal coupon payment does not decrease to zero however, since there always

remains some tax-shield benefits to the equityholders, resulting in a positive minimum optimal

coupon payment. The surprising implication is that it isalwaysoptimal for equityholders to default

on the project in equilibrium, even for very high values ofη. As η increases to the region in which

33This insensitively is evidenced in Fig. 4(b) and can also be seen by evaluating the critical valueη∗ defined in Eq.
(43); a higherη∗ corresponds to a lower sensitivity (for low values ofη).
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it would be optimal to never default (for a fixed coupon payment; see Fig. 3(b)), the equityholders

dramatically reduce their coupon payment so that default still remains optimal at sufficiently low

prices. Economically this implies that there is always someincentive for the equityholders to

transfer wealth from the debtholders.

At the start of the highη regime, the optimal coupons are very low and the profitability of the

project is very certain (due to both a low variance and low coupon payments). This results in a very

low default trigger price and an ever decreasing probability of default asη increases further. This

causes credit spreads to plummet, expressing a decrease in debtholders’ concern about project

default. However, since debt is now very affordable for equityholders to employ, and given the

very low expected bankruptcy costs, the optimal coupon payment starts to increase inη, causing

expected operating profits to increase further. Hence in thehigh η regime more debt is employed

to maximise the expected benefits from the tax shield asη increases further.

*** Insert Figure 8 about here ***

*** Insert Table 2 about here ***

Fig. 8 shows the total agency cost and its decomposition intothe two components (as defined

by Eq. (33)) as a function of the speed of mean reversionη.34 In addition, Table 2 also shows the

remaining agency cost comparative statics for other model parameters.

Result 6. The agency costs decrease (approximately linearly) as the speed of mean reversionη

increases and they become extremely small above a critical value ofη (≃ 0.184for our base case).

Furthermore, in regards to Fig. 8 we see that, consistent with Proposition 5, the agency cost

due to financing and timing decisions are both positive and for very low η the total agency cost

34In addition, we further decomposed the agency costs into theloss in pure operating value and the loss in net
benefits of debt financing, in the spirit of Mauer and Sarkar (2005). However, details are omitted in the interests of
brevity but the results are available from the authors upon request.
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is evenly split between the financing and timing components.However, asη increases the im-

pact of (suboptimal) timing decisions becomes more important relative to (suboptimal) financing

decisions.

Finally, in order to investigate the effect of the growth prospects of the debt financed project

we also choose to perform comparative statics for the GBM case with drift α , 0, obtained by

settingx = 0 andη = −α. Results can be found at the bottom of Table 2. We conclude from this

our final result.

Result 7. The agency cost due to (suboptimal) financing decisionsincreasesas the growth rate

α increases whereas the agency cost due to (suboptimal) timing decreases, resulting in a fairly

constant total agency cost.

Furthermore, the total amount of the agency cost is found to be approximately 8-9%, which

is consistent with the values reported in Mauer and Sarkar (2005). The implication of the above

result is that the relatively large agency costs reported inMauer and Sarkar (2005) appear to be

due to the non-stationarity of the output price dynamics.

5. Conclusions

In this paper, we have shown that the choice of the uncertainty process used to model (lever-

aged) investment project cash flows can have a significant impact on investment timing and related

project financing decisions. The application of a mean-reverting (MR) process to our proposed

model has revealed important equilibrium results with respect to the investment, default, and fi-

nancing strategies of equityholders, as well as the optimaldebt provision of rational debtholders.

Under MR dynamics debtholders are very reluctant to providemore funding than the purchase

price of the project, a result more consistent with observedinvestment practice than the existing

geometric Brownian motion (GBM) based results. Furthermore, we observed two distinct regimes

of equilibrium behaviour, dependent on the level of a key MR process parameter, the speed of mean

reversion; demonstrating the increased complexity of the equilibrium financing and investment

outcomes in the presence of MR dynamics.
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In regards to the reduction in firm value due to agency conflicts (the agency costs) our results

indicate that total agency costs are lower for a higher speedof mean reversion and also for a

higher long-run profitability of the debt-financed project.Moreover, due to a novel agency cost

decomposition, we have shown that under low-growth cash flows (modelled using GBM with

zero or negative drifts) agency costs are driven mainly by equityholders’ (investment and default)

timing decisions rather than due to their financing decisions. On the other hand, for high-growth

projects (modelled using GBM with positive drifts) it is theequityholders’financingdecisions that

contribute the greatest to agency costs. Assuming a desire to decrease agency costs in an economy,

the above information about the underlying components and drivers of such agency costs would

be valuable to both policy makers and regulators alike.

Future work in this area could include the extension of the current analysis to firms that have

existing operations financed with pre-existing debt, therefore analysing the effect of mean rever-

sion on possibleunderinvestment and the relateddebt overhangproblem (see Moyen, 2007). The

inclusion of some information asymmetry between equityholders and debtholders could also be

another direction for future research. Technical extensions may include accounting for jumps in

the underlying price dynamics.
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Appendix A. Derivation of risk-neutral price dynamics: Eq. (2)

To transform process (1) into one under the equivalent risk-neutral measure Q we follow Dixit

and Pindyck (1994) and first divide Eq. (1) byX to obtain the rate of change ofX

dXt

Xt
=
α(Xt)

Xt
dt+

σ(Xt)
Xt

dWP
t .

Taking expectations yields the expected percentage changeof X (or expected capital growth rate)

denoted bya(X)35

a(Xt)dt := E
P

[

dXt

Xt

]

=
α(Xt)

Xt
dt.

Next, it is well known that under the risk-neutral measure the process must have the following

dynamics

dXt = (r − δ(Xt)) Xtdt+ σ(Xt)dWQ
t

wherer denotes the risk-free rate of return andδ(X) the (explicit or implicit) dividend or conve-

nience yield. In the case of commodity prices such a convenience yield is not directly observable

and therefore must be implied. To do so we note that the total expected rate of return on a com-

modity, denotedµ(X), must be equal to the expected capital appreciationa(X), plus the implied

dividend; in other wordsµ(X) = a(X) + δ(X), from which weimply that δ(X) = µ(X) − a(X).

Substituting forδ(X) anda(X) yields

dXt =
(

α(Xt) − (µ(X) − r)Xt
)

dt+ σ(Xt)dWQ
t . (A.1)

35Note that, technically, we are required to justify that the expectation of the Itô integral is zero, i.e. it is a true
martingale and not astrict local martingale. For all cases considered in this paper this is indeed the case sinceσ(X)/X
will become a constant.
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To determine the total expected return on the commodity we appeal to equilibrium pricing argu-

ments. Furthermore, since it would appear that there are more risk factors involved in commodity

investments than simply market risk we choose to employ a multi-factor model.36 In this case the

expected total return (in excess of the risk-free rate) is linearly proportional to the expected excess

returns ofN risk factors and is given by the following pricing relationship

µ(X) − r =
N∑

i=1

βi(X)(µi − r) (A.2)

whereµi is the expected return of theith risk factorFi andβi(X) is the sensitivity of the commodity

X to this factor. Note that we allow this sensitivity to be dependent onX. The above equation can

be modified by noting that, by definition,βi(X) = cov(dX/X, dFi/Fi)/var(dFi/Fi) = σ(X)ρXi/Xσi

whereρXi andσi denote the correlation of the commodityX and theith risk factor, and the volatility

of this factor, respectively. Using the above relationshipwe can perform the following manipula-

tions

µ(X) − r =
N∑

i

σ(X)ρXi

Xσi
(µi − r) =

σ(X)
X

N∑

i

ρXi

(

µi − r
σi

)

=
σ(X)

X

N∑

i

ρXiκi =
σ(X)

X
λ (A.3)

whereκi denotes the market price of risk for theith risk factor and we have defined the parameter

λ := ρX1κ1 + ρX2κ2 + . . ., to be interpreted as the (theoretically justified)Sharpe ratioof the

commodityX. Note that in the case whenσ(X) = σX (the case considered in Section 3) we see

that the risk-premium does not depend on the price levelX. Finally, substitution of Eq. (A.3) into

Eq. (A.1) yields the required result

dXt =
(

α(Xt) − λσ(Xt)
)

dt+ σ(Xt)dWQ
t ,

and completes the derivation.

36A multi-factor model allows for more flexibility in modelling the risk-premium and its economic sources. For
example, it is well know that, historically, the correlation of commodity prices (oil in particular) with the equity market
are very low, hence there is limited equity beta in commodities. Under the assumption of a single factor model such
as the CAPM, the resulting risk premium would be close to zero(or even negative).
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Appendix B. Reformulation of Eq. (3) into Eq. (5)

AssumingEQ
x

∫ ∞

0
e−rt |πu(Xt)|dt < ∞ we have the following manipulations

Vu(x) = sup
Ta

E
Q
x

∫ Ta

0
e−rtπu(Xt)dt = sup

Ta

E
Q
x

[∫ ∞

0
e−rtπu(Xt)dt−

∫ ∞

Ta

e−rtπu(Xt)dt

]

= E
Q
x

∫ ∞

0
e−rtπu(Xt)dt+ sup

Ta

E
Q
x

[

−

∫ ∞

Ta

e−rtπu(Xt)dt

]

=: fu(x) + sup
Ta

E
Q
x

[

−

∫ ∞

0
e−r(s+Ta)πu(Xs+Ta)ds

]

(settingt = s+ Ta)

= fu(x) + sup
Ta

E
Q
x

[

Ex

[

−

∫ ∞

0
e−r(s+Ta)πu(Xs+Ta)ds|F X

Ta

]]

(tower law property)

= fu(x) + sup
Ta

E
Q
x

[

−e−rTa

∫ ∞

0
e−rs

Ex

[

πu(Xs+Ta)|F
X

Ta

]

ds

]

(Fubini’s theorem)

= fu(x) + sup
Ta

E
Q
x

[

−e−rTa

∫ ∞

0
e−rs

EXTa
[πu(Xs)] ds

]

(Markovian shift)

= fu(x) + sup
Ta

E
Q
x

[

−e−rTaEXTa

[∫ ∞

0
e−rsπu(Xs)ds

]]

(Fubini’s theorem)

= fu(x) + sup
Ta

E
Q
x

[

e−rTa
(

− fu(XTa)
)]

.

Appendix C. Proof of Proposition 1

Proof. To prove the existence and uniqueness ofx∗a and x∗d we need only consider the levered

equation
f ′
ℓ
(z)

fℓ(z)
=
φ′(z)
φ(z)

(C.1)

since the solution for the unlevered project is simply a special case of the above whenR = 0.

A cursory inspection of Eq. (C.1) indicates that sinceφ(z) is positive and decreasing andfℓ(z)

is increasing, that any solution to this equation must occurin the region wherefℓ(z) < 0 or z ∈

(0, f −1
ℓ

(0)). To analyse the equation further we rearrange the aboveas follows (with the aim of

producing better behaved left and right hand side functions)

fℓ(z)
f ′
ℓ
(z)
− z=

φ(z)
φ′(z)

− z.
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We thus defineglhs(z) :=
fℓ(z)−z f′

ℓ
(z)

f ′
ℓ
(z) andgrhs(z) := φ(z)−zφ′(z)

φ′(z) . If it can be shown that one of these

functions is non-decreasing and the other non-increasing then we have uniqueness of the root of

Eq. (C.1). For existence, we need to consider the limiting behaviour of these functions asz→ 0

and∞.

Consider firstgrhs. Differentiation of this function yields

g′rhs(z) =
φ′(z)
φ′(z)

+ φ(z)

(

1
φ(z)

)′

− 1 = −
φ(z)φ′′(z)
[

φ′(z)
]2
.

Theorem 1 in Alvarez (2003) states that, provided infinity isa natural boundary for the processX (a

standing assumption in the present paper) then the fundamental solutionsφ andψ are convex if and

only if the auxiliary functionθ(z) := rz+λσ(z)−α(z) is non-decreasing, i.e. whenr+λσ′(z)−α′(z) ≥

0. For all cases considered in Section 3 this condition will be satisfied, hence it can be seen that

grhs(z) is non-increasing.

Next we wish to consider the limits ofgrhs(z) asz→ 0 andz→ ∞. The following limits of the

fundamental solutionφ are well known37

lim
z↓0

φ(z) = ∞, lim
z↑∞

φ(z) = 0, lim
z↑∞

φ′(z) = 0.

Furthermore, it can be shown that if zero isnon-attractingin the sense that limz↓0 S(z) = ∞, where

S(z) denotes thescale functionof the diffusionX, then limz↓0 φ
′(z) = −∞. The above limits thus

indicate that both limits ofgrhs(z) are ofindeterminate form, therefore in order to compute them

we must apply l’Hôpital’s rule as follows

lim
z→L

grhs(z) = lim
z→L

(

(φ(z) − zφ′(z))′

φ(z)′′

)

= lim
z→L

(−z) = −L

whereL = 0,∞. Hence we have shown thatgrhs(z) is non-increasing with limitsgrhs(0+) = 0 and

grhs(∞−) = −∞.

37For more details see Borodin and Salminen (2002). The first limit is guaranteed by the natural or entrance (not-
exit) boundary at zero, the second limit is a result of the natural boundary at infinity and the third limit is true for all
diffusions sinceφ is a positive monotone decreasing function.
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Consideringglhs we can calculate its derivative to be

g′lhs(z) = −
fℓ(z) f ′′

ℓ
(z)

f ′
ℓ
(z)

from which we see that, providedfℓ(z) is convex,glhs(z) will be non-decreasing in the region where

fℓ(z) ≤ 0. Furthermore, sincefℓ(z) is increasing for allz we can deduce thatglhs(z) < 0 whenever

fℓ(z) < 0. In sum,glhs(z) is non-decreasing for allz and negative over the intervalz ∈ (0, f −1
ℓ

(0)).

Coupled with our knowledge ofgrhs(z) this proves the existence and uniqueness of a solution to Eq.

(C.1) provided thatfℓ(z) is convex and negative for at least somez in the state space of the process,

that the auxiliary functionθ(z), defined above, is non-decreasing, and that zero is a non-attracting

boundary for the process.

Appendix D. Proof of Corollary 2

Proof. The result follows from the fact thatglhs(z; R) = fℓ(z)
f ′
ℓ
(z) −z= fu(z)−(1−τ)R/r

f ′u(z) −z≤ glhs(z; 0), hence

glhs(z) for the levered project is dominated byglhs(z) for the unlevered project. Recalling also that

grhs(z) defined in Appendix C is non-increasing it follows directlythat x∗d ≤ x∗a and the proof is

complete.

Appendix E. Derivation of Eq. (21)

The debt value (forx ≥ x∗d) can be calculated using the following (trivial) manipulations

D(x) = E
Q
x

[∫ T∗d

0
e−rtRdt+ e−rT ∗d(1− b)Vu(XT∗d

)

]

= REQ
x

∫ T∗d

0
e−rtdt+ (1− b)Vu(x

∗
d)E

Q
x

[

e−rT ∗d
]

=
R
r

(

1− EQ
x

[

e−rT ∗d
])

+ (1− b)Vu(x
∗
d)EQ

x

[

e−rT ∗d
]

=
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

)

E
Q
x

[

e−rT ∗d
]

=
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

)
φ(x)
φ(x∗d)

.
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Appendix F. Derivation of Eq. (22)

To derive Eq. (22) we first substitute Eqs. (18) and (21) into Eq. (13) and rearrange to yield

Vℓ(x) = E(x) + D(x)

= fℓ(x) − fℓ(x
∗
d)
φ(x)
φ(x∗d)

+
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

)
φ(x)
φ(x∗d)

= − bVu(x
∗
d)
φ(x)
φ(x∗d)

︸          ︷︷          ︸

PV of bankruptcy cost

+ fℓ(x) − fℓ(x
∗
d)
φ(x)
φ(x∗d)

+
R
r
+

(

Vu(x
∗
d) −

R
r

)
φ(x)
φ(x∗d)

.

Furthermore, usingfℓ(x) = fu(x) − R(1− τ)/r we see that

Vℓ(x) = −bVu(x
∗
d)
φ(x)
φ(x∗d)

+ fu(x) − fu(x
∗
d)
φ(x)
φ(x∗d)

+
τR
r

(

1−
φ(x)
φ(x∗d)

)

︸             ︷︷             ︸

PV of tax shield

+Vu(x
∗
d)
φ(x)
φ(x∗d)

. (F.1)

Finally we recall from Eq. (10) that

Vu(x
∗
d) = fu(x

∗
d) − fu(x

∗
a)
φ(x∗d)

φ(x∗a)

and substituting in to (F.1) yields

Vℓ(x) = fu(x) − fu(x
∗
a)
φ(x)
φ(x∗a)

+
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

= Vu(x) +
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

as stated.

Appendix G. Proof of Corollary 4

Proof. Defining the function

g(z) := (Vℓ(z) − I )
ψ′(z)
ψ(z)
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we see thatx∗1 and x∗2 solveV′
ℓ
(x∗1) = g(x∗1) andE′(x∗2) = g(x∗2) respectively. Furthermore it is a

straightforward matter to show thatg′(x∗1) ≥ 0 andg′(x∗2) ≥ 0 using the following arguments. We

have

g′(z) = V′ℓ(z)
ψ′(z)
ψ(z)

+ (Vℓ(z) − I )
ψ′(z)
ψ(z)

[

ψ′′(z)
ψ′(z)

−
ψ′(z)
ψ(z)

]

and thus atz = x∗1, after identifying that
(

Vℓ(x∗1) − I
)
ψ′(x∗1)
ψ(x∗1) = V′

ℓ
(x∗1) from the first order condition,

we have

g′(x∗1) = V′ℓ(x
∗
1)
ψ′′(x∗1)

ψ′(x∗1)
≥ 0

since we have seen (from the proof of Proposition 1) thatψ is convex under the condition that

θ(z) = rz− α(z) + λσ(z) is non-decreasing. Applying the same procedure atz= x∗2 yields

g′(x∗2) = D′(x∗2)
ψ′(x∗2)

ψ(x∗2)
+ E′(x∗2)

ψ′′(x∗2)

ψ′(x∗2)
≥ 0

sinceD′(z) ≥ 0 andE′(z) ≥ 0 for all z. Finally it is also clear that

V′(z) = E′(z) + D′(z) ≥ E′(z), ∀z.

To summarise, we have that the rootsx∗1 and x∗2 both occur whenV′
ℓ
(z) and E′(z), respectively,

cross the functiong(z) with a positive slope and thatV′
ℓ
(z) dominatesE′(z). Thus is is clear that

the rootx∗1 must be greater thatx∗2.

Appendix H. Proof of Proposition 6

Proof. To calculate the fundamental decreasing and increasing solutions,φ andψ we substitute

α(Xt) = η(x − Xt) andσ(Xt) = σXt from Eq. (34) into the general ODE in Eq. (9) which, after

rearranging, yields
1
2
σ2x2u′′(x) + (ηx− (η + λσ)x) u′(x) − ru(x) = 0. (H.1)

In order to solve this equation we transform it to the standard form of the so-called Kummer’s

equation for which the solutions are well understood (Abramowitz and Stegun, 1972, Chapter 13).
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To do this we first letu(x) = xγv(x), whereγ is to be determined, and then letz= 2ηx/σ2x to yield

zv′′(z) +

(

2− 2γ +
2(η + λσ)

σ2
− z)

)

v′(z) +

(

γ +
1
z

(

(γ − 1)γ −
2γ(η + λσ) − 2r

σ2

))

v(z) = 0.

The next step is to chooseγ such that

1
2
σ2γ(γ − 1)− γ(η + λσ) − r = 0 (H.2)

to obtain

zv′′(z) + (n− z)v′(z) −mv(z) = 0, (H.3)

which we identify as Kummer’s equation withn = 2− 2γ + 2(η+λσ)
σ2 andm = −γ. It is well known

that Eq. (H.3) has two independent solutionsv(z) = U(m, n; z) andv(z) = M(m, n; z) which are

called, respectively, Kummer’s and Tricomi’s confluent hypergeometric functions. Furthermore, it

can be shown thatU(m, n; z) is strictly decreasing andM(m, n; z) is strictly increasing form > 0.

To ensure this is the case we are required to takeγ to be thenegativeroot of Eq. (H.2). It can also

be verified thatφ andψ are strictly decreasing and increasing respectively.
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Figures
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Figure 1: Unlevered and levered project valuesVu(x) andVℓ(x) as a function of the initial output
price x (solid line= Vℓ(x), dashed line= Vu(x), dotted line= D(x), dot-dashed line= E(x); for
base case parameters).
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Figure 2: Value of the first- and second-best investment option (F1 andF2) as a function of the
initial output pricex (solid line= second-best optionF2, dashed line= first-best optionF1, dotted
line is the value of the levered firmVℓ(x) less investment costI ; for base case parameters – except
we useR = $50 for emphasis). Note the smooth pasting of the first-best outcome but not the
second best.
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Figure 3: Default and abandonment trigger pricesx∗d and x∗a as a function of (a) long-run mean
price levelx, (b) speed of mean reversionη, (c) process volatilityσ, (d) risk-free (real) interest
rater, (e) Sharpe ratio of oilλ, (f) variable costsC, and (g) debt coupon paymentR (solid line=
x∗d, dashed line= x∗a; for base case parameters:x = $98.22, η = 0.1733,σ = 0.274, r = 0.04,
λ = 0.32, C = $60,R = $13.03, τ = 0.3 andb = 0.35). Note that these comparative statics are
produced for fixed couponR.
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Figure 4: The first- and second-best investment trigger prices as function of (a) long-run mean
price levelx, (b) speed of mean reversionη, (c) process volatilityσ, (d) risk-free (real) interest
rater, (e) Sharpe ratio of oilλ, (f) effective tax rateτ, (g) variable costsC, (h) debt coupon payment
R, and finally (i) investment costI (upper solid line= x∗2, upper dashed line= x∗1, lower solid line
= x∗d, lower dashed line= x∗a; for base case parameters:η = 0.1733, x = $98.22, σ = 0.274,
λ = 0.32, r = 0.04, τ = 0.3, b = 0.35, C = $60,R = $13.03 andI = $180). Note that these
comparative statics are produced for fixed couponR.

49



20 40 60 80 100 120 140

0.5

1.0

1.5

R

K∗/I

Figure 5: The equilibrium debt financing ratioK∗/I as a function of the annual debt coupon
paymentR (solid line = second-best outcome, dashed line= first-best outcome; for base case
parameters). Note the debtholders are very reluctant to give any debt over the required investment
for the project (dotted line:K∗ = I ).
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Figure 6: The first-best (dashed line) and second-best (solid line) firm value, as a function of
the coupon paymentR (for base case parameters). Note the first- and second-best firm value
maximising coupon payments.
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Figure 7: Comparative statics (in equilibrium) withη of (a) optimal coupon payment, (b) optimal
investment and default trigger prices, (c) equilibrium credit spreads, and (d) optimal leverage ratio
at time of investment. (solid line= second-best outcome, dashed line= first-best outcome; for
base case parameters).
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Figure 8: Comparative statics (in equilibrium) of total agency cost (solid line) withη and its
decomposition intoACf in (dashed line) andACtim (dot-dashed line)—see Eq. (33); for base case
parameters.
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Table 1: Comparative statics of the first-best and second-best optimal financing and investment decisions in equilibrium.

Optimal Investment Firm value Agency Optimal Default Credit spread

coupon trigger cost (%) leverage trigger (basis points)

R∗1 R∗2 x∗1 x∗2 F1(X0) F2(X0) AC L∗1 L∗2 x∗d(R
∗
1) x∗d(R∗2) CS1 CS2

Base Case 15.82 13.03 141.10 136.49 44.88 44.50 0.87 47.03 43.49 52.07 48.77 785.60 701.01
Base Case (η = 0) 44.01 25.09 150.70 136.69 46.29 42.70 8.40 60.01 45.18 75.35 61.65 1,504.51 1,375.29

x =60 35.90 28.57 175.89 167.80 3.22 3.05 5.57 56.19 50.67 78.8972.30 2,200.65 2,088.83
x =80 28.92 23.13 161.74 154.22 11.86 11.42 3.81 54.00 49.01 69.68 64.21 1,682.69 1,577.95
x =120 12.49 12.49 90.46 90.33 303.28 303.28 0.00 64.16 64.16 23.78 23.78 2.80 2.80
x =140 24.35 24.35 73.42 73.00 593.75 593.75 0.00 78.40 78.40 26.36 26.36 1.42 1.42

η =0.1 29.97 22.11 150.78 141.17 37.91 36.46 3.99 55.16 48.26 66.58 59.53 1,353.22 1,244.71
η =0.15 22.03 17.61 146.89 140.10 39.70 38.93 1.98 51.03 46.54 59.13 54.59 1,088.48 993.74
η =0.2 3.29 3.29 123.87 123.78 69.43 69.43 0.00 27.63 27.65 24.79 24.79 17.18 17.18
η =0.25 7.80 7.80 100.02 99.96 150.01 150.01 0.00 58.58 58.59 24.60 24.60 3.40 3.40

σ =0.20 6.14 6.14 96.24 96.11 139.38 139.38 0.00 46.95 46.95 30.50 30.50 9.50 9.50
σ =0.25 2.88 2.88 125.62 125.37 58.08 58.07 0.00 21.94 21.98 29.88 29.88 70.05 70.09
σ =0.30 21.84 17.48 153.75 146.95 39.24 38.62 1.59 49.69 45.36 57.50 52.96 1,117.53 1,011.46
σ =0.35 30.58 23.36 173.98 163.84 36.36 35.49 2.44 51.52 45.98 63.36 56.68 1,550.10 1,409.53

r =0.01 3.48 3.48 107.67 107.66 380.37 380.37 0.00 59.94 59.95 17.02 17.02 0.42 0.42
r =0.03 1.72 1.72 134.27 134.11 66.29 66.29 0.00 15.96 15.98 26.25 26.25 61.18 61.19
r =0.05 19.33 16.02 144.85 139.43 33.42 32.97 1.35 49.54 45.96 56.41 52.76 928.61 841.00
r =0.07 24.47 20.41 151.36 145.12 20.69 20.27 2.07 52.51 48.87 62.46 58.28 1,089.72 997.86

λ =0.20 7.19 7.19 106.39 106.27 194.32 194.32 0.00 45.31 45.35 22.69 22.69 7.10 7.10
λ =0.30 11.67 9.42 136.02 132.88 57.33 57.13 0.35 42.41 38.57 45.90 42.79 539.06 456.40
λ =0.40 23.06 18.95 155.11 148.94 18.04 17.63 2.32 51.18 47.15 62.88 58.67 1,352.55 1,255.95
λ =0.50 28.15 23.39 168.58 162.11 5.81 5.61 3.50 53.02 48.96 70.58 65.95 1,821.75 1,721.21
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Table 1: (continued).

Optimal Investment Firm value Agency Optimal Default Credit spread

coupon trigger cost (%) leverage trigger (basis points)

R∗1 R∗2 x∗1 x∗2 F1(X0) F2(X0) AC L∗1 L∗2 x∗d(R
∗
1) x∗d(R∗2) CS1 CS2

Base Case 15.82 13.03 141.10 136.49 44.88 44.50 0.87 47.03 43.49 52.07 48.77 785.60 701.01
Base Case (η = 0) 44.01 25.09 150.70 136.69 46.29 42.70 8.40 60.01 45.18 75.35 61.65 1,504.51 1,375.29

τ =0.15 2.22 2.20 132.67 132.35 65.74 65.73 0.00 12.48 12.43 31.35 31.30 183.37 182.21
τ =0.25 10.32 8.94 138.19 135.50 50.82 50.68 0.28 36.36 33.98 45.32 43.45 580.11 530.71
τ =0.35 20.60 16.43 144.05 137.56 39.63 38.92 1.82 54.66 50.49 57.38 52.77 954.37 838.84
τ =0.45 28.82 21.96 150.38 140.18 30.56 29.11 4.99 65.35 60.74 65.91 58.84 1,242.86 1,070.99

C =50 9.38 9.38 82.49 82.39 235.78 235.78 0.00 55.95 55.95 19.7519.75 3.24 3.24
C =55 4.69 4.69 107.74 107.66 114.36 114.36 0.00 36.90 36.92 21.57 21.57 9.46 9.46
C =65 24.01 19.32 159.19 152.12 27.03 26.43 2.28 51.49 47.03 66.11 61.32 1,279.79 1,180.70
C =70 28.74 22.72 172.35 164.10 18.69 18.11 3.21 53.33 48.21 75.66 69.80 1,563.13 1,454.89

b =0.15 27.61 19.78 138.81 130.90 50.15 48.67 3.04 65.30 58.08 64.69 56.50 1,059.34 867.00
b =0.25 21.32 16.49 140.11 133.88 47.16 46.37 1.71 56.32 51.13 58.16 52.84 921.74 792.29
b =0.45 10.95 9.54 141.76 138.65 43.22 43.06 0.37 37.36 35.17 46.15 44.27 641.56 590.41
b =0.55 6.81 6.30 142.10 140.30 42.09 42.04 0.12 27.50 26.54 40.31 39.50 485.63 462.23

I =100 10.58 8.66 116.70 112.95 91.56 91.12 0.48 44.58 41.11 45.66 43.05 661.23 582.44
I =140 13.00 10.66 128.22 124.05 65.12 64.70 0.66 45.87 42.33 48.72 45.77 724.95 642.28
I =220 18.99 15.76 155.25 150.16 30.20 29.87 1.10 48.02 44.54 55.63 52.00 840.90 756.35
I =260 22.44 18.77 170.47 164.88 20.02 19.76 1.32 48.82 45.44 59.35 55.39 889.52 806.20

α =-0.08 44.42 31.75 176.85 166.34 3.67 3.39 8.18 59.26 50.35 85.96 75.53 2,352.50 2,223.84
α =-0.04 43.38 28.34 163.62 151.73 13.29 12.27 8.31 59.61 48.3181.06 69.27 1,947.23 1,816.68
α =0.04 49.49 22.85 139.30 121.51 163.21 150.49 8.45 60.48 40.53 68.47 51.81 1,022.25 901.47
α =0.08 75.58 25.48 132.96 106.27 680.95 627.37 8.54 61.24 34.75 60.15 37.92 537.50 433.43
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Table 2: Comparative statics of agency costs and its timing and financing components.

AC ACf in ACtim

Base Case 0.87 0.18 0.68
Base Case (η = 0) 8.40 3.95 4.45

x =60 5.57 1.24 4.32
x =80 3.81 0.84 2.97
x =120 0.00 0.00 0.00
x =140 0.00 0.00 0.00

η =0.10 3.99 1.16 2.83
η =0.15 1.98 0.45 1.53
η =0.20 0.00 0.00 0.00
η =0.25 0.00 0.00 0.00

σ =0.20 0.00 0.00 0.00
σ =0.25 0.00 0.00 0.00
σ =0.30 1.59 0.36 1.23
σ =0.35 2.44 0.63 1.81

r =0.01 0.00 0.00 0.00
r =0.03 0.00 0.00 0.00
r =0.05 1.35 0.28 1.08
r =0.07 2.07 0.42 1.64

λ =0.2 0.00 0.00 0.00
λ =0.3 0.35 0.09 0.26
λ =0.4 2.32 0.46 1.86
λ =0.5 3.50 0.65 2.85

AC ACf in ACtim

Base Case 0.87 0.18 0.68
Base Case (η = 0) 8.40 3.95 4.45

τ =0.15 0.00 0.00 0.00
τ =0.25 0.28 0.05 0.23
τ =0.35 1.82 0.43 1.38
τ =0.45 4.99 1.35 3.63

C =50 0.00 0.00 0.00
C =55 0.00 0.00 0.00
C =65 2.28 0.50 1.78
C =70 3.21 0.74 2.47

b =0.15 3.04 1.01 2.03
b =0.25 1.71 0.46 1.25
b =0.45 0.37 0.06 0.31
b =0.55 0.12 0.01 0.11

I =100 0.48 0.11 0.37
I =140 0.66 0.14 0.51
I =220 1.10 0.22 0.88
I =260 1.32 0.26 1.07

α =-0.08 8.18 2.55 5.62
α =-0.04 8.31 3.15 5.15
α =0.04 8.45 4.98 3.48
α =0.08 8.54 6.24 2.30
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